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Abstract

Recent technology advances have enabled mediated
query processing with Internet accessible WebSources. A
characteristic of WebSources is that their access costs ex-
hibit transient behavior. These costs depend on the network
and server workloads, which are often affected by the time
of day, day, etc. Given transient behavior, an appropriate
performance target (PT) for a noisy environment will cor-
respond to ”at least X percentage of queries will have a la-
tency of less than T units of time”. In this paper, we pro-
pose an optimizer strategy that is sensitive to the objective
of meeting such performance targets (PT). For each query
plan, a PT sensitive optimizer uses both the expected value
of the cost distribution of the plan, as well as the expected
delay of the plan. We validate our strategy using a simula-
tion based study of the optimizer’s behavior. We also exper-
imentally validate the optimizer using traces of access costs
for real WebSources.

1 Introduction

Recent technology advances have enabled mediated
query processing in the wide area environment with remote
relations (objects) that are resident on Internet accessible
WebSources. There are many characteristics of mediated
query processing in this environment that pose substantial
challenges. One characteristic is that typically there are sev-
eral alternate WebSources for each remote relation. Thus, a
mediator subquery (on a relation) can be submitted to multi-
ple candidate WebSources. In order to choose between alter-
nate WebSources, an optimizer has to compare their access
costs. However, the second characteristic of Internet acces-
sible WebSources is that their access costs exhibit transient
behavior. The costs may be described as spatio-temporal
cost distributions. Variation in response time may depend
on many factors including the topology of the client and the

�This research has been partially supported by the National Science
Foundation under grants DMI9908137 and IIS0135142.

remote server, the network and server workloads, which are
often affected by the time of day, day, etc. and points of con-
gestion between the client and remote server [21].

There has been extensive prior research on query eval-
uation techniques to accommodate transient behavior. Re-
active query evaluation techniques at the plan level are de-
scribed in [1, 4, 18, 25]. Alternately, adaptive evaluation
techniques at the plan and operator implementation level are
described in [3, 11, 12, 14, 24]. Research in [2, 7, 13, 15, 29]
have addressed various aspects of the task of modifying
an optimizer to handle distributions for various parameters,
e.g., available memory, or intermediate join cardinality. The
Tukwila project [14] provides an adaptive framework com-
posed of rules and adaptive operators that are sensitive to
transient factors. Its optimizer also has a re-optimization ca-
pability based on pipelined fragments of query execution.
The Telegraph project explores adaptive fine-grained data
flow based query processing techniques using rivers, eddies,
ripple join, XJoin, etc. [3, 11, 24]. They also focus on con-
tinuous and high frequency response to changing feedback.
Query scrambling [1, 25] is a query optimization and eval-
uation technique to deal with transient conditions, e.g., un-
expected delay. It is based on plan re-organization to avoid
idle time, and the synthesis of new operators to execute in
the absence of other work. It makes a key contribution of a
response time based query optimizer to deal with delay, in-
stead of the more traditional cost based approach.

While adaptive techniques are best suited to overcome
transient behavior, an optimizer must address the compan-
ion issue of planningto choose among noisy sources, to de-
termine those sources that are most likely to meet a perfor-
mance target (PT). A performance target (PT) will corre-
spond to ”at least X percentage of queries will have a latency
of less than T units of time” for some particular choice of
source(s). This is in contrast to ”100% of the queries must
execute in less than 400 seconds”.

The task of planning to choose among noisy sources is
not straightforward. The transient behavior of WebSources
and the resulting cost distributions would challenge a tradi-
tional cost based optimizer which expects exact costs. This
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would make it difficult to directly compare the cost of plan
execution on different (combinations of) WebSources. LEC
(least expected cost) is an approach [7] to compare multi-
ple candidate plans when they are associated with cost dis-
tributions. LEC uses the expected values of cost distribu-
tions for each plan to determine the best plan. LEC is de-
fined formally in Section 4.1. However, the expected value
reflects aggregate behavior, and is not a good reflection of
the actual response time. (Response time is typically de-
fined to be the time to execute the query and download re-
sults from the source.) A noisy source with high variance in
its response time will behave differently from a stable source
that is less noisy. Meanwhile, both sources could have the
same, or similar expected values of the response time. Thus,
the difference in actual performance may be independent of
the expected values of their access cost distributions.

In this paper, we present a PT sensitive optimizer that ex-
plores the relationship between the choice of sources and
plans, and the likelihood of meeting a performance target.
Our approach to PT sensitive optimization is as follows: for
each combination of sources (and cost distributions), we de-
termine a plan and its cost distribution. We characterize the
plan with the expected costof the plan, as well as the ex-
pected delay. The expected delayrepresents the deviation
in excessof the expected cost. We combine the expected
costand the expected delayusing a cost factor, and a de-
lay factor, to obtain a combined measure, the Cost–Delay–
MeasureCDM .

Using a simulation based study, we demonstrate that
the LEC optimizer is typically unable to choose among
sources/plans to meet a desired target, whereas the PT op-
timizer is able to do this successfully. We validate that the
PT sensitive optimizer’s behavior is predictable and scalable
with respect to the following: alternate sources with vary-
ing values of expected cost and expected delays; a mix of
queries of varying complexity; a large search space of plans;
and traces of access cost distributions obtained from real
WebSources.

2 Architecture

Wrapper mediator architectures have been proposed for
interoperability of heterogeneous information sources [16,
17, 19, 26]. In this paper, we consider Internet accessible
WebSources. A WebSource is accessible via the http pro-
tocol; a form-based interface provides a limited query capa-
bility, and returns answers in XML or HTML. The media-
tor has the task of decomposing a mediator query into sub-
queries; identifying relevant WebSources that can answer a
subquery; and providing query optimization and evaluation
functionalities. Wrappers reflect the limited query capabil-
ity of WebSources and handle mismatch between the medi-
ator and the WebSource. Our mediator is an extension of the

Predator ORDBMS [22].
A major challenge for our optimizer is the unpredictable

behavior of WebSources, dictated by network and server
workloads and points of congestion in the network. These
workloads may be affected by the time of day, the day of
the week, etc. We developed a tool, the Web (P)rediction
(T)ool, WebPT, based on an online learning and prediction
technique [5, 10, 28]. The WebPT is able to exploit the sig-
nificance of Time and Day on workloads, to construct a more
accurate access cost distribution, even in cases where the
sources are noisy.

3 Motivating Example

Consider two alternate sources, S� and S�, for a remote
mediator relation. The access cost (response time) distribu-
tions for these sources are represented by normal (Gaussian)
distributions 1 with different values for the expected value�,
and the variance �. One choice for the optimizer is to choose
a source with the least expected value(�), in this example it
is source S�. However, the performance of S�, i.e., the ac-
tual response time ofS�, is not always better than the perfor-
mance of S�. Consider Figure 1 that represents a quantile
plot of the percentage of queries versus the response time for
the two sources. To construct the quantile plots, we used the
distributions of S� and S� to generate the response time for
some statistically significant (large) number of queries sub-
mitted to these sources.

Figure 1 indicates the risk and the benefit with respect
to a performance target of 400 seconds. Source S� has the
greater benefit with respect to the target. However, it also
has the greater risk of queries that exceed the target. For ex-
ample, if we consider the 90-th percentile, the response time
of 90 % of the queries to source S� will not exceed 600 sec-
onds, whereas for source S�, 90 % of the queries will not
exceed 800 seconds. This illustrates that in noisy environ-
ments, the expected value alone is insufficient to compare
sources. The optimizer needs a more flexible strategy that
would consider both the risk and benefitof its choice.

Different applications may favor different targets. An ap-
plication may only benefit from some information within a
certain time period, e.g., less than 400 seconds. Source S�
has a higher percentile of queries that meet this target. Thus,
it has a higher utility with respect to meeting this target, and
should be the optimizer’s choice. The optimizer must em-
phasize the benefit of each source of meeting this target - this
is an optimistic optimizer strategy. A utility function can be
appropriately constructed where the utility of exceeding the
target is close to 0. A different application may have a re-
striction that exceeding a deadline, e.g., 600 seconds, will
be very expensive. Thus, the strategy should be to choose

1We use Gaussian distributions only for purposes of explanation.
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Figure 1. Risk and benefit of Sources S� and S� for a performance target of 400 seconds

a source where we minimize the percentile of the queries
that exceed the target. Source S� has a lower percentile of
queries (10%) that do not meet this target, and it should be
the optimizer’s choice. In order to choose S�, the optimizer
must emphasize the risk of each source of not meeting the
target. This is defined to be a conservative strategy. We con-
sider the utility of close to 100% of the queries in selecting
a source(s) to reflect a conservative strategy.

4 A Performance Target Sensitive Optimizer

Our performance target (PT) sensitive optimizer consid-
ers both the expected cost and the expected delay of a plan.
We briefly review Least Expected Cost (LEC) based opti-
mization [7]. We introduce the concept of Expected Delay
for a cost distribution, and define the Cost–Delay–Measure
(CDM) for a query plan.

4.1 Cost–Delay–Measure CDM

Accurate cost estimation for a plan is very difficult since
it requires accurate a priori knowledge of costs and details
of the run-time environment. The cost of a plan is typi-
cally determined using a cost formula and (specific) value(s)
for some vector of parameters V that affect the cost of the
plan. Research in [7] has proposed an alternative least ex-
pected cost(LEC) approach. Let us assume that the prob-
ability distribution of values for each parameter in V is in-
dependent. Suppose V corresponds toK values where each
V K represents a combination of values, one for each of the
parameters in V . Each VK has probability of occurrence
Prob�V K�. Now, the expected costEC(p) =

P
K

(Cost-
plan-p(V K�� Prob�V K��.

The LEC-optimizer compares the expected cost of each
plan, and chooses the candidate plan with the least expected
cost. The expected cost reflects aggregate behavior but it
may be insufficient to determine actual performance. We de-
fine the concept of the Expected Delay (ED)of a plan for
some access cost distributions. Together, EC andED more
accurately reflect the actual performance.

We explain the concept using a plan accessing a sin-
gle WebSource. Figure 2a illustrates a normal (Gaussian)

distribution with expected value �. Suppose the access
cost distribution distS is approximated by k discrete val-
ues, where each value val Sk has a probability of occur-
rence prob val Sk. Then, the expected value[7] of this dis-
tribution, also referred to as the mean, is EC�distS� �P
k
val Sk � prob val Sk. Next, we compute the excess

of each of the k particular values val Sk of the distribu-
tion, compared to the expected value EC�distS�. This is
excess Sk. Suppose we only consider the positive excess,
when the value val Sk is greater than EC�distS� (or �);
this deviation represents a delay. The probability of this
value of delay is prob val Sk. Then, the expected delayof
the distribution distS is ED�distS� �

P
k
delay Sk �

prob val Sk.
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Figure 2. Explanation of Expected Delay

Given a plan p, with an expected cost EC(p) as defined
previously, the expected delay for this plan, ED(p) =

P
K

(Delay-plan-p(DelV K�� Prob�V K��.
We describe how Delay-plan-p(DelV K) for a plan p is cal-
culated from the cost formula for calculating the cost of the
plan or Cost-plan-p(V K) in the next section.

The Cost–Delay–Measure(CDM ) uses a cost factorcf ,
and a delay factordf . The CDM for plan p CDM(p)= cf �
EC�p� � df � ED�p�.
The choice of the PT sensitive optimizer is as follows:

Given a set of candidate plans, and values for cf and
df , the optimizer choosesamong the candidateplans for
one that minimizes theCDM value, for corresponding
values for cf and df .

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02) 
1063-6927/02 $17.00 © 2002 IEEE 



4.2 Calculating the CDM for a Query Plan

The cost of a plan is estimated in a bottom-up manner,
starting from the terminal nodes of the plan tree. A termi-
nal node that is a scan on a mediator relation that is resident
on a remote WebSources is associated with an access cost
distribution. We use these distributions to calculate the cost
distribution for each interior node of the plan tree. The cost
formula combines the distributions of child nodes to obtain
the distribution for the parent node.

Consider a three-way join query on relations R1, R2, and
R3. Suppose that WebSources S1, S2, and S3 have been as-
signed to R1, R2, and R3, respectively. Figure 3 shows the
plan tree and the cost distributions for each node. For each
leaf node, RT is the response time and prob is the corre-
sponding probability. For the interior nodes, Cost is the
cost of evaluating the corresponding operator at the node.
First, the scan on relation R1 (or R2 or R3) is assigned the
cost distribution for the corresponding source. Next, we cal-
culate the cost distribution for the join of R1 and R2. For
simplicity, we assume that the join is implemented as a hash
join, and we ignore the local (in memory) cost of the hash
join implementation. Then, the cost of the join is the sum of
the costs of the two scans on R1 and R2. We also assume that
the cost distributions for S1 and S2 are independent, and we
use this assumption to calculate the joint probability distri-
bution. For example, a scan cost of 120 seconds for R1 with
probability 0.2 (from S1) and a scan cost of 25 seconds for
R2 with probability 0.4 (from S2) will result in a join cost of
145 seconds with probability 0.08.

This calculation of cost distributions may result in a dis-
tribution that has values with a very low probability, or ad-
jacent values that are very close in value. Such a fine gran-
ularity in the distribution is not very useful to the optimizer.
In addition, it can significantly decrease the optimizer per-
formance for multi-way join queries. We use a special tech-
nique to merge values in the calculated distribution that do
not meet some threshold. This is illustrated in Figure 3.
Consider the initial cost distribution for the root node of the
plan tree (a 3-way join); it is labeled D1. Values whose prob-
ability is below a probability threshold, in this case a value
of 0.05, are merged to obtain the distribution labeled D2. Fi-
nally, adjacent values whose cost difference is less than a
threshold, in this case 10 seconds, are also merged, to obtain
the final distribution labeled D3. Details are in [27].

Using the final cost distribution D3 for the root node of
the plan, we can calculate the expected cost EC(p)and the
expected delay ED(p) for plan p. Finally, using the values
for the cost factor cf and the delay factor df we calculate
the CDM for plan p: cf � EC�p� � df � ED�p�.

4.3 Generating Candidate Plans

Given a mediator query where N of the relations are re-
mote, we assume that it is the choice of a particular Web-
Source and its access cost distribution, for each of theseN
relations, that has the greatest impact on the performance
target(s). Based on this assumption, we (informally) de-
scribe our strategy to produce plans that minimize CDM as
follows:

� In the first phase, we enumerate all choices of combina-
tions of WebSource(s) and access cost distribution(s),
for each of the remote relations.

� In the second phase, we vary the values of cf and df in
the range [0.0,1.0]. We note that for the results reported
in this paper, we display the optimizer choices for val-
ues of cf and df adding up to 1.0, i.e., the value of cf
= (1.0 - df). These values were found to work well to
illustrate the optimizer strategy. For each pair of values
(cf , df)and its choice of WebSource(s), we use a mod-
ified relational optimizer to generate the best planwith
the least value for CDM .

� For each pair of values (cf , df), we rank the best plans
based on their CDM values¿. The winner(s) for each
pair of values (cf , df) are selected.

Details of how the best plan is generated as well as the
cost model is reported in [27].

4.4 Utility and Optimizer Strategy

Utility functions [6, 20, 23] can be used to quantify how
well the response time for a query met some target, and to
quantify the utility when a target is not met.

Utility�T� x� K� �

�
��� if x � T
K��x� T �K� otherwise

Let x be the actual response time and T be the target re-
sponse time. K is a constant�0 that is used to tune the rate
at which the utilityvalue decreases from 1.0 when x exceeds
the target T .

To determine the utility of an aggressive optimistic strat-
egy one would only consider queries that met the targetand
whose utility = 1. In general, we can also associate a pos-
itive utility (less than 1) with those queries that exceed the
target. We chose a value ofK in our experiments so that the
utility is 0.25 when the response time x � �T . Other val-
ues forK may also be considered with no prejudicial effect.
To evaluate a conservative strategy one could consider the
utility of up to 100%of the queries submitted to the source.
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Figure 3. Cost Distributions associated with query plan; RT: Response Time; prob: probability

5 Behavior of the PT Optimizer

5.1 Simulation Environment

For the simulation, our mediator was executed on a Sun
Ultra SPARC 1 with 64MB of memory, running Solaris 2.6.
While validating access to WebSources, this machine was
connected via a 10 Mbps Ethernet cable to the domain umi-
acs.umd.edu. This domain is connected to its ISP via a 27
Mbps DS3 line.

The mediator queries were complex N-way join queries
and we used up to 12 queries in the simulation. They were
generated to reflect the complex decision support queries
and statistics of the TPC-D Benchmark. For each query,
up to 5 relations were identified as relations resident on re-
mote WebSources. For each such relation, we identified up
to 3 alternate WebSources, with their dependencies and ac-
cess cost distributions. All costs are end-to-end delays for
downloading data. The mediator statistics were modified so
as to vary the percentage of remote processing cost versus
the total cost of the queries. We report on behavior for spe-
cific queries as well as the aggregatebehavior over several
queries.

5.2 Comparison of the LEC Optimizer and the PT
Optimizer

For our first experiment, we chose a five-way join query.
Two of the relations were identified as remote relations. For
each of the remote relations we considered 2 or 3 different
synthetic Gaussian access cost distributions with different
values for � and �. For various values of cf and df , the PT
optimizer chose a combination of sources and the plan with
minimum CDM value.

Figure 4(a) reports onCDM values for selected sources
and plans, as we varied the delay factor from 0.0 to 1.0, i.e.,
the cost factor varied from 1.0 to 0.0. The y axis with df =
0.0 represents the LEC optimizer choice. As can be seen, the
winneras decided by the LEC optimizer is labeled (�) and
the worst case plan for the LEC optimizer is labeled (x). As

we increase the value of df , and consider the CDM value,
the situation changes, and with df = 1.0, the plan labeled (x)
has the lowest CDM value.

Figure 4(b) reports on the utility of the actual response
times for each of the plans. Suppose we consider a particu-
lar target response time T � ����E � 	ms; this value was
chosen to represent an average response time across several
plans. We note that the trends that we discover hold indepen-
dent of the particular value of T . Suppose we only consider
the %age of those queries with utility = 1.0 that met this tar-
get. From (the top of) Figure 4(b), the winner of the LEC
optimizer (�) has a smaller %age of queries that met this
target. Instead the plan (�) has the greatest %age of queries
with utility= 1.0 followed by the plan (�). Neither (�) nor (�)
would have been chosen by the LEC optimizer. Suppose we
consider the utility of the queries that do not meet this par-
ticular target. Recall that we chose a value of K such that
the utility has a value of 0.25 when the response time is �T .
As we consider more queries, the LEC winner (�) eventu-
ally has a higher utility than (�) or (�). This is consistent
with the PT optimizer; as df increases, the value of CDM
for plan (�) decreases rapidly, in comparison to (*) or (�). If
we consider 100% of the queries in Figure 4(b), the highest
utility is associated with plan (x). This too is consistent with
the PT optimizer, since with df = 1.0, plan (x) has the low-
est CDM value. To summarize, the LEC optimizer is not
a good predictor of different performance targets (or utility)
for sources/plans, whereas the PT optimizer can indeed dif-
ferentiate between sources/plans using the df and CDM .

5.3 PT Optimizer Behavior on Traces from Real
Sources

In the next set of experiments we explore the optimizer
behavior on cost distributions obtained from query traces
from real WebSources. The sources are EPA [8] and Air-
craft [9]. We recognize that these sources are not replicas,
so the semantics of these queries are meaningless. Never-
theless, it illustrates the behavior of the PT optimizer with
trace data. The source EPA had a low level of noise, whereas
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Aircraft was a noisy source. We first report on a single
cost distribution for each source. We then consider the im-
pact of distributions that are sensitive to time and day.

The optimizer used the (single) distribution for
Aircraft and for EPA to generate cost distributions
for the query plans P� and P�, respectively. Figure 5a
represents quantile plots of response time for P� and P�
that were generated from those distributions. We observe
that there is a significant risk when choosing the noisy
Aircraft (P1) since the response time of a large per-
centile of the queries exceed the response time of queries
on EPA (P2). However, there is indeed a small benefit
associated with choice of noisy Aircraft (P1) since
the response time of a small percentile of queries is lower
than EPA (P2).

CDM values for P� and P� are shown in Figure 5b for
different values of delay factor df . Note that as df increases,
the values ofCDM also decrease. To explain, we chose the
value of cf to be = (1.0 - df). Hence the value of CDM can
either increase of decrease, and the trend is determined by
the relative values ofEC andED for some source. The plan
P� based on the less noisy EPA is the winner for all ranges
of df , i.e., for all optimizer strategies. This is consistent with
the significant risk and a small benefit associated with noisy
Aircraft (P1). If we consider the relative CDM (P�
- P�), it is � 1.4E�	 ms when df = 0.0 and increases to
� 1.9E�	 ms when df = 1.0. This indicates that while P�
was always the winner, as df increases, and the PT optimizer
becomes more conservative and emphasizes delay, P�wins
by an increasing margin (of the relative CDM ). Thus, the
behavior of the optimizer is consistent with respect to the
amount of risk and benefit in choosing query plans on real
WebSources. We note that in this case, since the expected
cost of P� was less than the expected cost of P�, the LEC
optimizer would also choose P�.

Next, we consider cost distributions that are sensitive to
both time interval and day. We report on the CDM for
the two plans noisy Aircraft (P1) and less noisy EPA
(P2) in Figure 6. We consider the CDM obtained from
using a single cost distribution to represent access costs (la-
beled whole sample). We compare this against the CDM
obtained when the cost distribution was constructed to be
sensitive to time and day variations. The CDM labeled
day-based reflects a cost distribution constructed to repre-
sent access costs on a specific day of the week, and time-
based reflects a specific N hour time interval over different
days of the week. In prior research [5, 10, 28], both time of
day and day of week were significant predictors of access
costs for these sources, and time and day were exploited to
more accurately predict their access costs.

Since Aircraft is a noisy source compared to EPA,
the variance of CDM as we increase the value of df is
much greater for Aircraft. If we consider the graph la-

beled day-based forAircraft, we observe much less vari-
ance compared to the whole sample for Aircraft. Thus,
the PT optimizer is able to differentiate the situation when
knowledge of time and day variations are used in construct-
ing the cost distribution. For the less noisy EPA, the vari-
ance ofCDM for the whole sample as df increases is much
less. Here too, the graphs labeled day-based and time-based
show slightly less variance. These experiments indicate that
the PT optimizer behavior consistently reflects the behavior
of more or less noisy sources, as well as the situation when
time and day variations are used in constructing access cost
distributions.

5.4 Cost–Delay Trade-Off

We report on the CDM trade-off of the PT optimizer,
compared to the LEC optimizer, as we varied sources and
queries. In these experiments, we report on the aggregate
behavior over the query mix. The LEC optimizer is repre-
sented by the value of 0.0 for df .

First, we consider one remote relation and 4 alternate
WebSources. The EC for the sources was comparable to
the ideal source, but the values of ED varied widely. Fig-
ure 7a reports on the quantile plots for the response times
of query plans, one for each of the sources. Figure 7b com-
pares the relative CDM for each plan/source, compared to
the CDM of the plan/ideal source �, as we vary the delay
factor df . As is seen in Figure 7b, the LEC optimizer (df =
0.0) is not able to distinguish a clear winner among the non
ideal sources, since they have similar values for EC. The
plan labeled � in Figure 7a has the greatest benefit and the
greatest risk in comparison to the ideal source. The plan la-
beled � has the least benefit and the least risk. From Figure
7b, as we increase the delay factor df , we see that the rel-
ative CDM for the plan � (compared to the ideal source)
increases very rapidly which is consistent with the risk. On
the other hand, the relative CDM for the plan � only in-
creases slightly which is consistent with the low benefit and
low risk compared to the ideal source. This further illus-
trates that while the LEC optimizer was unable to differen-
tiate between the sources/plans, the PT optimizer is able to
vary the df and predict behavior, in this case, in comparison
to the ideal source.

6 Controlling Optimizer Strategy

In this section, we explore how the value of CDM im-
pacts the optimistic or conservative choices of plans, and
therefore the performance targets. Recall, that a conserva-
tive strategy corresponds to higher values of df , while the
optimistic strategy corresponds to lower values of df .

We consider an experiment with only one remote relation
in the query so that we can clearly understand the trade-off
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Figure 4. Utility Based Comparison of the LEC and the PT Optimizer
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Figure 5. Behavior of Plans with Real WebSources
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Figure 6. Effect of day and time interval on CDM for Real WebSources
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(a) Aggregate behavior (5 queries); 1 remote relation 
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Figure 7. Aggregate Behavior over Multiple Queries; Relative ECD; One Remote Relation
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between optimistic and conservative choices. We report on
the aggregate behavior over multiple queries. We chose 3
alternate WebSources. The ideal source had ED close to 0
(�) and the other more noisy sources ( + and �) had lower
values for EC, and higher values for ED. Figure 8a re-
ports on the quantile plots which were generated using the
synthetic cost distributions. Figure 8b reports on CDM .

First, we make a pairwise comparison of (+,�) and (�,�)
The plan + has significant benefit compared to �; however
it also has significant risk. The plan � has significant benefit
compared to� and it has little risk. The PT optimizer should
favor plan + instead of plan � only under a very optimistic
strategy, where it ignores risk and emphasizes the benefit of
meeting a target. The plan �, on the other hand, has signifi-
cant benefit and little risk compared to �. This implies that
plan � should be chosen by the optimizer for a wide range of
behavior, spanning from optimistic to conservative. Finally,
plan � should be favored when the optimizer is conserva-
tive.

Figure 8b confirms that our PT optimizer choices based
on values for cost factor, delay factor, and CDM , are con-
sistent with the conservative and optimistic strategies that
we have described. In Figure 8b, if we consider an opti-
mistic value for the delay factor, df = 0.25, we observe that
the winners of the very optimistic to optimistic strategy (�
and +) both have lower values of CDM , compared to the
conservative choice �. Further, the plan � has low CDM
values irrespective of the value of df . This plan is the winner
for a wide range of behavior from optimistic to fairly conser-
vative.

To complete our analysis, we consider the utility of these
plans with respect to two targets. Figure 9(a) represents
a lower target (2.5E+7 ms) and Figure 9(b) represents a
higher target (3.5E+7 ms). Suppose we desire an aggres-
sive optimistic strategy with respect to the lower target. The
choice(s) of the PT optimizer with lower df values (� and +)
have a larger % of queries with utility=1.0 that meet this tar-
get, as observed at the top of Figure 9(a). (+) had the highest
percentage of queries, while� had 0% of queries with utility
= 1.0. Suppose we want a conservative strategy with respect
to the higher target and we consider the utilityof 100% of the
queries. In this case, � is the winner, followed by � and +,
and this is consistent with df = 1.0.

7 Conclusions and Future Work

We have developed a PT sensitive optimizer based on
values of cost factor cf , delay factor df and the Cost-Delay-
Measure CDM . We show that the LEC optimizer is unable
to differentiate between sources and plans with respect to
some performance target. The PT optimizer is able to use the
CDM measure to predict the behavior of plans with respect
to some target. We also validate that varying the values of

cf and df reflect more optimistic or conservative optimizer
strategies.
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