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Abstract remote server, the network and server workloads, which are
often affected by thetime of day, day, etc. and pointsof con-
Recent technology advances have enabled mediatedestion between the client and remote server [21].
query processing with Internet accessible WebSources. A There has been extensive prior research on query eval-
characteristic of WebSources is that their access costs eXyation techniques to accommodate transient behavior. Re-
hibit transient behavior. These costs depend on the networkactive query evaluation techniques at the plan level are de-
and server workloads, which are often affected by the timescribed in [1, 4, 18, 25]. Alternately, adaptive evaluation
of day, day, etc. Given transient behavior, an appropriate techniquesat the plan and operator implementation level are
performance target (PT) for a noisy environment will cor- describedin[3, 11, 12, 14, 24]. Researchin[2, 7, 13, 15, 29]
respond to "at least X percentage of queries will have a la- have addressed various aspects of the task of modifying
tency of less than T units of time”. In this paper, we pro- an optimizer to handle distributionsfor various parameters,
pose an optimizer strategy that is sensitive to the objectivee g., availablememory, or intermediatejoin cardinality. The
of meeting such performance targets (PT). For each queryTykwila project [14] provides an adaptive framework com-
plan, a PT sensitive optimizer uses both the expected valugosed of rules and adaptive operators that are sensitive to
of the cost distribution of the plan, as well as the expected transient factors. Itsoptimizer also has are-optimizationca-
delay of the plan. We validate our strategy using a simula- pability based on pipelined fragments of query execution.
tion based study of the optimizer’s behavior. We also exper-The Telegraph project explores adaptive fine-grained data
imentally validate the optimizer using traces of access costsf|ow based query processing techniquesusing rivers, eddies,
for real WebSources. ripplejoin, XJoin, etc. [3, 11, 24]. They also focus on con-
tinuous and high frequency response to changing feedback.
Query scrambling [1, 25] is a query optimization and eval-
uation technique to deal with transient conditions, e.g., un-
expected delay. It is based on plan re-organization to avoid

1 Introduction

Recent technology advances have enabled mediated
guery processing in the wide area environment with remote
relations (objects) that are resident on Internet accessible
WebSources. There are many characteristics of mediated
guery processing in this environment that pose substantial
challenges. One characteristicisthat typically there are sev-
era aternate WebSources for each remote relation. Thus, a
mediator subquery (on arelation) can be submitted to multi-
ple candidate WebSources. Inorder to choose between alter-
nate WebSources, an optimizer has to compare their access
costs. However, the second characteristic of Internet acces-
sible WebSources is that their access costs exhibit transient
behavior. The costs may be described as spatio-temporal
cost distributions Variation in response time may depend
on many factors including the topology of the client and the

*This research has been partially supported by the National Science
Foundation under grants DM19908137 and 11S0135142.

idle time, and the synthesis of new operators to execute in
the absence of other work. It makes a key contribution of a
response time based query optimizer to deal with delay, in-
stead of the more traditional cost based approach.

While adaptive techniques are best suited to overcome
transient behavior, an optimizer must address the compan-
ionissue of planningto choose among noisy sources, to de-
termine those sources that are most likely to meet a perfor-
mance target (PT). A performance target (PT) will corre-
spondto”at least X percentage of querieswill havealatency
of lessthan T units of time” for some particular choice of
source(s). Thisisin contrast to " 100% of the queries must
execute in less than 400 seconds”.

The task of planning to choose among noisy sources is
not straightforward. The transient behavior of WebSources
and the resulting cost distributionswould challenge atradi-
tional cost based optimizer which expects exact costs. This
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would make it difficult to directly compare the cost of plan
execution on different (combinations of) WebSources. LEC
(least expected cost) is an approach [7] to compare multi-
ple candidate plans when they are associated with cost dis-
tributions. LEC uses the expected values of cost distribu-
tions for each plan to determine the best plan. LEC is de-
fined formally in Section 4.1. However, the expected value
reflects aggregate behavior, and is not a good reflection of
the actual response time. (Response time is typically de-
fined to be the time to execute the query and download re-
sultsfrom the source.) A noisy source with high variancein
itsresponse timewill behavedifferently from astable source
that is less noisy. Meanwhile, both sources could have the
same, or similar expected values of theresponsetime. Thus,
the difference in actual performance may be independent of
the expected values of their access cost distributions.

Inthispaper, we present a PT sensitive optimizer that ex-
plores the relationship between the choice of sources and
plans, and the likelihood of meeting a performance target.
Our approach to PT sensitive optimizationisas follows: for
each combination of sources (and cost distributions), we de-
termine aplan and its cost distribution. We characterize the
plan with the expected costf the plan, as well as the ex-
pected delay The expected delayepresents the deviation
in excesof the expected cost. We combine the expected
costand the expected delaysing a cost factor and a de-
lay factor, to obtain a combined measure, the Cost—Delay—
MeasureC'D M.

Using a simulation based study, we demonstrate that
the LEC optimizer is typicaly unable to choose among
sources/plans to meet a desired target, whereas the PT op-
timizer is able to do this successfully. We validate that the
PT sensitiveoptimizer’sbehavior ispredictableand scalable
with respect to the following: alternate sources with vary-
ing values of expected cost and expected delays; a mix of
gueriesof varying complexity; alarge search space of plans;
and traces of access cost distributions obtained from rea
WebSources.

2 Architecture

Wrapper mediator architectures have been proposed for
interoperability of heterogeneous information sources [16,
17, 19, 26]. In this paper, we consider Internet accessible
WebSources. A WebSourceisaccessible viatheht t p pro-
tocol; aform-based interface providesalimited query capa-
bility, and returns answers in XML or HTML. The media-
tor has the task of decomposing a mediator query into sub-
queries, identifying relevant WebSources that can answer a
subquery; and providing query optimization and evaluation
functionalities. Wrappers reflect the limited query capabil-
ity of WebSources and handle mismatch between the medi-
ator and the WebSource. Our mediator isan extension of the

Predator ORDBMS[22].

A major challenge for our optimizer isthe unpredictable
behavior of WebSources, dictated by network and server
workloads and points of congestion in the network. These
workloads may be affected by the time of day, the day of
the week, etc. We developed a tool, the Web (P)rediction
(T)ool, WebPT, based on an online learning and prediction
technique[5, 10, 28]. The WebPT is able to exploit the sig-
nificance of Timeand Day onworkloads, to construct amore
accurate access cost distribution, even in cases where the
SOUrces are noisy.

3 Maotivating Example

Consider two alternate sources, S; and .S, for aremote
mediator relation. The access cost (response time) distribu-
tionsfor these sources are represented by normal (Gaussian)
distributions* with different valuesfor the expected value
andthevariance s. One choicefor theoptimizeristo choose
asource with the least expected valyg), inthisexample it
is source S;. However, the performance of 51, i.e., the ac-
tual responsetime of S, isnot aways better than the perfor-
mance of S». Consider Figure 1 that represents a quantile
plot of the percentage of queriesversusthe responsetimefor
thetwo sources. To construct the quantile plots, we used the
distributionsof S, and .S, to generate the response time for
some statistically significant (large) number of queries sub-
mitted to these sources.

Figure 1 indicates the risk and the benefit with respect
to a performance target of 400 seconds. Source S has the
greater benefit with respect to the target. However, it also
hasthe greater risk of queriesthat exceed the target. For ex-
ample, if we consider the 90-th percentile, the responsetime
of 90 % of the queriesto source S, will not exceed 600 sec-
onds, whereas for source 51, 90 % of the queries will not
exceed 800 seconds. Thisillustrates that in noisy environ-
ments, the expected value aone is insufficient to compare
sources. The optimizer needs a more flexible strategy that
would consider both the risk and benefitof its choice.

Different applicationsmay favor different targets. Anap-
plication may only benefit from some information within a
certain time period, e.g., less than 400 seconds. Source S;
has a higher percentile of queriesthat meet thistarget. Thus,
it has a higher utility with respect to meeting thistarget, and
should be the optimizer’s choice. The optimizer must em-
phasi ze the benefit of each source of meeting thistarget - this
isan optimistic optimizer strategA utility function can be
appropriately constructed where the utility of exceeding the
target isclose to 0. A different application may have are-
striction that exceeding a deadline, e.g., 600 seconds, will
be very expensive. Thus, the strategy should be to choose

1We use Gaussian distributions only for purposesof explanation.
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Figure 1. Risk and benefit of Sources S and S; for a performance target of 400 seconds

a source where we minimize the percentile of the queries
that exceed the target. Source S» has alower percentile of
gueries (10%) that do not meet thistarget, and it should be
the optimizer’s choice. In order to choose 5=, the optimizer
must emphasize the risk of each source of not meeting the
target. Thisisdefined tobeaconservative strategyVe con-
sider the utility of close to 100% of the queriesin selecting
a source(s) to reflect a conservative strategy.

4 A Performance Target Sensitive Optimizer

Our performance target (PT) sensitive optimizer consid-
ers both the expected cost and the expected delay of a plan.
We briefly review Least Expected Cost (LEC) based opti-
mization [7]. We introduce the concept of Expected Delay
for a cost distribution, and define the Cost-Delay-Measure
(CDM) for aquery plan.

4.1 Cost-Delay—Measure CDM

Accurate cost estimation for a planisvery difficult since
it requires accurate a priori knowledge of costs and details
of the run-time environment. The cost of a plan is typi-
cally determined using acost formulaand (specific) value(s)
for some vector of parameters V' that affect the cost of the
plan. Research in [7] has proposed an alternative least ex-
pected cos{LEC) approach. Let us assume that the prob-
ability distribution of values for each parameter in V isin-
dependent. Suppose V' correspondsto K values where each
Vi represents a combination of values, one for each of the
parameters in V. Each Vi has probability of occurrence
Prob(Vi). Now, the expected costEC(p)= 5, (Cost-
pIan-p(VK) X PTOI)(VK))

The LEC-optimizer compares the expected cost of each
plan, and chooses the candidate plan with the | east expected
cost. The expected cost reflects aggregate behavior but it
may be insufficient to determine actual performance. Wede-
fine the concept of the Expected Delay (EDyf a plan for
some access cost distributions. Together, £C' and £ D more
accurately reflect the actua performance.

We explain the concept using a plan accessing a sin-
gle WebSource. Figure 2aillustrates a normal (Gaussian)

distribution with expected value p.  Suppose the access
cost distribution distS is approximated by k discrete val-
ues, where each value val_S;, has a probability of occur-
rence prob_val_Sj,. Then, the expected valuf7] of thisdis-
tribution, aso referred to as the mean is EC(distS) =
> pval oSy x prob_val_Sy. Next, we compute the excess
of each of the k particular values val_S;, of the distribu-
tion, compared to the expected value EC(distS). Thisis
excess_Sy. Suppose we only consider the positive excess,
when the value val_S;, is greater than EC(distS) (or p);
this deviation represents a delay. The probability of this
value of delay isprob_val_S;. Then, the expected delagf
the distribution distS is ED(distS) = ), delay_Sy x
prob_val _Sy,.

0.081

Probability
o
o
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Figure 2. Explanation of Expected Delay

val_s,

Given a plan p, with an expected cost EC(p) as defined
previously, the expected delay for this plan, ED(p) = > 5
(Delay-plan-p(DelV ) x Prob(Vi)).

We describe how Delay-plan-p(DelV k) for aplan piscal-
culated from the cost formulafor calculating the cost of the
plan or Cost-plan-p(V &) in the next section.

The Cost-Delay-Measurg(C' D M) usesacost factore f,
and adelay factordf. The C DM for planp CDM(p)=cf x
EC(p)+ df x ED(p).

The choice of the PT sensitive optimizer is as follows:

Given a set of candidate plans, and values for ¢ f and
df , the optimizer choosesamong the candidateplansfor
onethat minimizesthe C'D M value, for corresponding
valuesfor cf and df .
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4.2 Calculatingthe CDM for a Query Plan

The cost of a plan is estimated in a bottom-up manner,
starting from the terminal nodes of the plan tree. A termi-
nal node that is a scan on a mediator relation that is resident
on a remote WebSources is associated with an access cost
distribution. We use these distributionsto calcul ate the cost
distributionfor each interior node of the plan tree. The cost
formula combines the distributions of child nodesto obtain
the distribution for the parent node.

Consider athree-way join query onrelationsR1, R2, and
R3. Suppose that WebSources S1, S2, and S3 have been as-
signed to R1, R2, and R3, respectively. Figure 3 showsthe
plan tree and the cost distributionsfor each node. For each
leaf node, RT is the response time and pr ob is the corre-
sponding probability. For the interior nodes, Cost isthe
cost of evaluating the corresponding operator at the node.
First, the scan on relation R1 (or R2 or R3) is assigned the
cost distributionfor the corresponding source. Next, wecal-
culate the cost distribution for the join of R1 and R2. For
simplicity, we assume that the joinisimplemented as ahash
join, and we ignore the local (in memory) cost of the hash
joinimplementation. Then, the cost of thejoinisthe sum of
thecostsof thetwo scanson R1and R2. We also assume that
the cost distributionsfor S1 and S2 are independent, and we
use this assumption to calculate the joint probability distri-
bution. For example, ascan cost of 120 seconds for R1 with
probability 0.2 (from S1) and a scan cost of 25 seconds for
R2 with probability 0.4 (from S2) will resultin ajoin cost of
145 seconds with probability 0.08.

This calculation of cost distributionsmay result in a dis-
tribution that has values with a very low probability, or ad-
jacent values that are very close in value. Such a fine gran-
ularity inthe distributionis not very useful to the optimizer.
In addition, it can significantly decrease the optimizer per-
formance for multi-way join queries. We use a specia tech-
nique to merge values in the calculated distribution that do
not meet some threshold. This is illustrated in Figure 3.
Consider the initial cost distributionfor the root node of the
plantree(a3-wayjoin); itislabeled D1. Valueswhose prob-
ability is below a probability threshold, in this case avalue
of 0.05, are merged to obtainthedistributionlabeled D2. Fi-
nally, adjacent values whose cost difference is less than a
threshold, in thiscase 10 seconds, are also merged, to obtain
thefinal distributionlabeled D3. Detailsare in [27].

Using the final cost distribution D3 for the root node of
the plan, we can calculate the expected cost EC(p)and the
expected delay ED(p) for plan p. Finaly, using the values
for the cost factor ¢f and the delay factor df we calculate
the CDMfor planp: cf x EC(p) + df x ED(p).

4.3 Generating Candidate Plans

Given amediator query where NV of the relations are re-
mote, we assume that it is the choice of a particular Web-
Source and its access cost distribution, for each of thése
relations that has the greatest impact on the performance
target(s). Based on this assumption, we (informally) de-
scribe our strategy to produce plans that minimize CDM as
follows:

¢ Inthefirst phase, we enumerate all choices of combina
tions of WebSource(s) and access cost distribution(s),
for each of the remote relations.

¢ Inthe second phase, wevary thevaluesof ¢f and df in
therange[0.0,1.0]. We notethat for theresultsreported
in this paper, we display the optimizer choices for val-
ues of ¢f and df addingupto 1.0, i.e., thevalue of ¢f
= (1.0 - df). These values were found to work well to
illustratethe optimizer strategy. For each pair of values
(cf, df)and its choice of WebSource(s), we use amod-
ified relational optimizer to generate the best planvith
theleast valuefor C D M.

o For each pair of values (¢ f, df), we rank the best plans
based on their C' DM values¢, The winner(s) for each
pair of values (¢ f, df) are selected.

Details of how the best plan is generated as well as the
cost model isreported in [27].

4.4 Utility and Optimizer Strategy

Utility functions[6, 20, 23] can be used to quantify how
well the response time for a query met some target, and to
guantify the utility when atarget is not met.

o 1.0 ifx <T
Utility(T,xK) = { K/(x—T+K) otherwise

Let x be the actual response time and 7" be the target re-
sponsetime. K isaconstant >0 that isused to tunetherate
at whichthe utility value decreases from 1.0 when x exceeds
thetarget 7.

To determine the utility of an aggressive optimistic strat-
egy onewould only consider queriesthat met the targeénd
whose utility = 1. In general, we can also associate a pos-
itive utility (less than 1) with those queries that exceed the
target. We chose avalue of K inour experiments so that the
utility is 0.25 when the response time z = 27". Other val-
uesfor K may also be considered with no prejudicial effect.
To evaluate a conservative strategy one could consider the
utility of up to 100%of the queries submitted to the source.
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Figure 3. Cost Distributions associated with query plan; RT: Response Time; prob: probability

5 Behavior of thePT Optimizer
5.1 Simulation Environment

For the simulation, our mediator was executed on a Sun
UltraSPARC 1 with 64MB of memory, running Solaris 2.6.
While validating access to WebSources, this machine was
connected viaa 10 Mbps Ethernet cable to the domain umi-
acs.umd.edu. This domain is connected to its ISP viaa 27
Mbps DS3 line.

The mediator queries were complex N-way join queries
and we used up to 12 queriesin the simulation. They were
generated to reflect the complex decision support queries
and statistics of the TPC-D Benchmark. For each query,
up to 5 relations were identified as relations resident on re-
mote WebSources. For each such relation, we identified up
to 3 aternate WebSources, with their dependencies and ac-
cess cost distributions. All costs are end-to-end delays for
downloading data. The mediator statisticswere modified so
as to vary the percentage of remote processing cost versus
the total cost of the queries. We report on behavior for spe-
cific queries as well as the aggregatebehavior over several
queries.

5.2 Comparisonof theLEC Optimizer and thePT
Optimizer

For our first experiment, we chose a five-way join query.
Two of the relationswere identified as remote relations. For
each of the remote relations we considered 2 or 3 different
synthetic Gaussian access cost distributions with different
valuesfor p and . For variousvalues of ¢f and df, the PT
optimizer chose a combination of sources and the plan with
minimum C' DM value.

Figure 4(a) reportson C' D M valuesfor selected sources
and plans, as we varied the delay factor from 0.0t0 1.0, i.e.,
the cost factor varied from 1.0t0 0.0. The y axiswith df =
0.0 representsthe L EC optimizer choice. Ascan beseen, the
winneras decided by the LEC optimizer is labeled (O) and
theworst case plan for the LEC optimizer islabeled (x). As

we increase the value of df, and consider the C'D M value,
the situation changes, and with df = 1.0, the plan labeled (x)
has the lowest C' DM value.

Figure 4(b) reports on the utility of the actual response
times for each of the plans. Suppose we consider a particu-
lar target responsetime " = 1.25E + 6 ms; thisvalue was
chosen to represent an average response time across several
plans. We notethat thetrendsthat we discover holdindepen-
dent of the particular value of T". Suppose we only consider
the %age of those querieswith utility = 1.0 that met thistar-
get. From (the top of) Figure 4(b), the winner of the LEC
optimizer (O) has a smaller %age of queries that met this
target. Instead the plan () has the greatest %age of queries
withutility=1.0followed by theplan (). Neither (x) nor (o)
would have been chosen by the LEC optimizer. Supposewe
consider the utility of the queries that do not meet this par-
ticular target. Recall that we chose a value of K such that
the utility has avalue of 0.25 when the responsetimeis27'.
As we consider more queries, the LEC winner (O) eventu-
aly has a higher utility than (x) or (). Thisis consistent
with the PT optimizer; as df increases, the value of C DM
for plan (O) decreases rapidly, in comparisonto (*) or (o). If
we consider 100% of the queriesin Figure 4(b), the highest
utility is associated with plan (x). Thistooisconsistent with
the PT optimizer, since with df = 1.0, plan (x) has the low-
est C DM vaue. To summarize, the LEC optimizer is not
agood predictor of different performance targets (or utility)
for sources/plans, whereas the PT optimizer can indeed dif-
ferentiate between sources/plans using the df and C DM .

5.3 PT Optimizer Behavior on Traces from Real
Sources

In the next set of experiments we explore the optimizer
behavior on cost distributions obtained from query traces
from real WebSources. The sources are EPA [8] and Air-
craft [9]. We recognize that these sources are not replicas,
so the semantics of these queries are meaningless. Never-
theless, it illustrates the behavior of the PT optimizer with
trace data. The source EPA had alow level of noise, whereas
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Ai rcraft wasanoisy source. We first report on asingle
cost distribution for each source. We then consider the im-
pact of distributionsthat are sensitive to time and day.

The optimizer used the (single) distribution for
Aircraft and for EPA to generate cost distributions
for the query plans P1 and P2, respectively. Figure 5a
represents quantile plots of response time for 1 and P2
that were generated from those distributions. We observe
that there is a significant risk when choosing the noisy
Aircraft (P1l) since the response time of a large per-
centile of the queries exceed the response time of queries
on EPA (P2). However, there is indeed a small benefit
associated with choice of noisy Ai rcraft (Pl) since
the response time of a small percentile of queriesis lower
than EPA ( P2) .

C DM vauesfor P1 and P2 are shown in Figure 5b for
different values of delay factor df. Notethat asdf increases,
thevaluesof C'D M aso decrease. To explain, we chosethe
valueof ¢f tobe= (1.0- df). Hencethevaueof C' DM can
either increase of decrease, and the trend is determined by
therelativevaluesof £C and £ D for somesource. Theplan
P2 based on the less noisy EPA isthe winner for all ranges
of df, i.e., for al optimizer strategies. Thisisconsistentwith
the significant risk and a small benefit associated with noisy
Aircraft (P1). If weconsider therelative CDM (P1
- P2), itis~ 1.4E4+6 mswhen df = 0.0 and increases to
~ 1.9E+6 mswhen df = 1.0. Thisindicates that while P2
was awaysthewinner, asdf increases, and the PT optimizer
becomes more conservative and emphasizes delay, P2 wins
by an increasing margin (of the relative C'DA). Thus, the
behavior of the optimizer is consistent with respect to the
amount of risk and benefit in choosing query plans on real
WebSources. We note that in this case, since the expected
cost of P2 was less than the expected cost of P1, the LEC
optimizer would also choose P2.

Next, we consider cost distributionsthat are sensitive to
both time interval and day. We report on the C DM for
thetwo plansnoisy Ai rcraft (P1) andlessnoisy EPA
(P2) inFigure 6. We consider the C' DM obtained from
using a single cost distributionto represent access costs (la-
beled whole sample). We compare this against the C DM
obtained when the cost distribution was constructed to be
sensitive to time and day variations. The C'DM labeled
day-based reflects a cost distribution constructed to repre-
sent access costs on a specific day of the week, and time-
based reflects a specific N hour time interval over different
days of the week. In prior research [5, 10, 28], both time of
day and day of week were significant predictors of access
costs for these sources, and time and day were exploited to
more accurately predict their access costs.

Since Ai rcr aft isanoisy source compared to EPA,
the variance of C' DM as we increase the value of df is
much greater for Ai r cr af t . If we consider the graph la-

beled day-based for Ai r cr af t , we observemuch lessvari-
ance compared to the whole sample for Ai r cr af t . Thus,
the PT optimizer is able to differentiate the situation when
knowledge of time and day variations are used in construct-
ing the cost distribution. For the less noisy EPA, the vari-
ance of C' DM for thewhole sample as df increasesismuch
less. Heretoo, the graphs|abel ed day-based and time-based
show dlightly lessvariance. These experimentsindicate that
the PT optimizer behavior consistently reflects the behavior
of more or less hoisy sources, as well as the situation when
time and day variationsare used in constructing access cost
distributions.

54 Cost—Delay Trade-Off

We report on the C' DM trade-off of the PT optimizer,
compared to the LEC optimizer, as we varied sources and
gueries. In these experiments, we report on the aggregate
behavior over the query mix. The LEC optimizer is repre-
sented by the value of 0.0 for df.

First, we consider one remote relation and 4 aternate
WebSources. The £C for the sources was comparable to
the ideal source, but the values of £ D varied widely. Fig-
ure 7areports on the quantile plots for the response times
of query plans, onefor each of the sources. Figure 7b com-
pares the relative C' DM for each plan/source, compared to
the CDM of the plan/ideal source *, as we vary the delay
factor df. Asisseenin Figure 7b, the LEC optimizer (df =
0.0) is not able to distinguish a clear winner among the non
ideal sources, since they have similar values for £C. The
plan labeled > in Figure 7a hasthe greatest benefit and the
greatest risk in comparison to the ideal source. The plan la-
beled o has the least benefit and the least risk. From Figure
7b, as we increase the delay factor df, we see that the rel-
ative C'DM for the plan > (compared to the ideal source)
increases very rapidly which is consistent with therisk. On
the other hand, the relative C'DM for the plan o only in-
creases dightly which is consistent with the low benefit and
low risk compared to the ideal source. This further illus-
trates that while the LEC optimizer was unable to differen-
tiate between the sources/plans, the PT optimizer is able to
vary the df and predict behavior, inthiscase, in comparison
to the ideal source.

6 Controlling Optimizer Strategy

In this section, we explore how the value of C DM im-
pacts the optimistic or conservative choices of plans, and
therefore the performance targets. Recall, that a conserva-
tive strategy corresponds to higher values of df, while the
optimistic strategy corresponds to lower values of df.

We consider an experiment with only one remoterelation
in the query so that we can clearly understand the trade-off
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between optimistic and conservative choices. We report on
the aggregate behavior over multiple queries. We chose 3
alternate WebSources. The ideal source had £ D closeto O
(o) and the other more noisy sources ( + and o) had lower
values for £C, and higher values for /. Figure 8are-
ports on the quantile plots which were generated using the
synthetic cost distributions. Figure 8b reportson C' DM .

First, we make apairwise comparison of (+,>>) and (o, ©>)
The plan + has significant benefit compared to ©>; however
it also hassignificant risk. The plan o has significant benefit
compared tor> andit haslittlerisk. The PT optimizer should
favor plan + instead of plan t> only under a very optimistic
strategy, where it ignores risk and emphasi zes the benefit of
meeting atarget. The plan o, on the other hand, has signifi-
cant benefit and littlerisk compared to t>. Thisimpliesthat
plan o should be chosen by the optimizer for awiderange of
behavior, spanning from optimisticto conservative. Finally,
plan > should be favored when the optimizer is conserva-
tive.

Figure 8b confirms that our PT optimizer choices based
on values for cost factor, delay factor, and C'D M, are con-
sistent with the conservative and optimistic strategies that
we have described. In Figure 8b, if we consider an opti-
mistic value for the delay factor, df = 0.25, we observe that
the winners of the very optimistic to optimistic strategy (o
and +) both have lower values of C'D M, compared to the
conservative choice . Further, the plan o has low C DM
valuesirrespectiveof thevalueof df. Thisplanisthewinner
for awiderange of behavior from optimistictofairly conser-
vative.

To complete our analysis, we consider the utility of these
plans with respect to two targets. Figure 9(a) represents
a lower target (2.5E+7 ms) and Figure 9(b) represents a
higher target (3.5E+7 ms). Suppose we desire an aggres-
sive optimistic strategy with respect to thelower target. The
choice(s) of the PT optimizer with lower df values (o and +)
have alarger % of querieswith utility=1.0that meet thistar-
get, asobserved at thetop of Figure 9(a). (+) had the highest
percentage of queries, whiler> had 0% of querieswith utility
=1.0. Supposewe want aconservative strategy with respect
tothehigher target and we consider the utility of 100% of the
queries. Inthiscase, 1> isthe winner, followed by o and +,
and thisis consistent with df = 1.0.

7 Conclusionsand Future Work

We have developed a PT sensitive optimizer based on
values of cost factor ¢ f, delay factor df and the Cost-Delay-
Measure C' DM . We show that the LEC optimizer isunable
to differentiate between sources and plans with respect to
some performancetarget. The PT optimizer isabletousethe
C' D M measure to predict the behavior of planswith respect
to some target. We also validate that varying the values of

ef and df reflect more optimistic or conservative optimizer
strategies.
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