Overview

= Review of Client-Server paradigm

= Overview of important concepts

= Basic spider design

An example

* An exercise

September 28, 2001

Spidersin Java

Client Server Paradigm

= Basic
= A server is started and listens to a given port for requests
= The client initiates a request
= The server processes the request
= The server sends the response
e Spiders
= A spider assumes http servers are running on standard ports and
proceeds to connect to them asking for a page

= Because the http connection is a simple request and response with an
automatic shutdown the client needs do nothing more than make the
request. The server will close the connection

September 28, 2001 Spidersin Java 3

Http as a Simple Example

= When using a web browser, here is what happens:

® The user types a request in the browser window:
http://www.sis.pitt.edu/~spring/index.html
® The browser looks up the internet address of www.sis.pitt.edu (136.142.116.2), and
makes a connection to the well known port for http - (80).
® The browser then writes the following request to the socket:

GET /~spring/index. htm http/1.1

® Knowing the client is done, the server looks up the file, and assuming it is found, sends
back the file proceeded by a header:
http:/1.1 200 ok
Content - Type: text/htm
® There are actually a number of other lines between these two but these are the only
required lines. When the server is done with its header, it sends a

<CR><LF><CR><LF> sequence followed by the document.

® When it is done sending the document, it closes the connection.

September 28, 2001 Spidersin Java 4

Sockets

September 28, 2001 Spidersin Java

Selected Methods

= There are more than 20 classes within the java.net package as
well as a number of interfaces and exceptions that need to be
studied.

= There are important classes that need to be used when the
very efficient UDP protocols are used - l.e. the Datagram
classes

e There are a series of classes that are used with web based
applications related to URL'’s

< For our purposes here, there are three classes of interest:
= InetAddress
= Socket
= ServerSocket
September 28, 2001 Spidersin Java

InetAddress Class

Socket programming anticipated numerous schemes for addressing machines
on networks. Most implementations still allow for this, but in reality, there is
only one address type used — internet addresses.
An internet address is a binary identifier that is four bytes long. Humans
have trouble with this long a string of ones and zeros, so two alternate forms
are also used:

® Dotted decimal notations such as the STRING 136.142.116.26

® Domain names such as the STRING cport.sis.pitt.edu
InetAddress class is a final class with methods that provide for conversion:

® InetAddress a = InetAddress.getByName(String)
There are also methods to convert an InetAddress to the dotted decimal
notation (getHostAddress) and domain name (getHostName)

September 28, 2001 Spidersin Java 7

Socket Class

The Socket Class has a large number of constructors and methods. The
most used form would be:

® Socket S= new Socket(InetAddress a, int port);

This establishes a connection to the process listening to Port port on the
machine at address a.

The Socket class has a number of utility methods to set the characteristics
of the channel and to query attributes of the connection.

Three methods are essential to developing clients and servers:
® getOutputStream() which gets a stream to write to
® getlnputStream() wheich gets a stream to read from

® close() which closes the socket connection.

September 28, 2001 Spidersin Java 8

Socket In Detall

= Be sure that all exceptions are handled appropriately
| net Addr ess Host ; _
try {// Create a Socket to nake connection

Host = I net Addr ess. get ByName(“ww. pi tt.edu”);
S = new Socket (Host , 80);

}
catch (UnknownHost Excepti on eh)
{System out.println("Host not found");

catch (|1 OException es)

{Systemout.printin("Can't create socket");
es. print StackTrace();

September 28, 2001 Spidersin Java 9

Skeleton of a Client

/1 convert dotted decinmal string to an address

| net Address Host = | net Address. get ByName("127.0.0.1");
//open a connection to the host on port 32638

S = new Socket (Host , 32638);

/1 get the raw i nput and output streanms as object streans
/1 letting Java do encodi ng

Sout = new bj ect Qut put Stream(S.getQutputStreanm());
Sin = new bj ectl nput Strean{ S.getlnputStrean{));

/Il wite

Sout.witeObject(“CET filenane http/1.1");

Sout . fl ush();

/] read

response = (String) Sin.readObject();

/1 read response and process it

Sout . cl ose();

Sin.close();

S. close();

September 28, 2001 Spidersin Java 10

Basic Spider Paradigm

= Establish a starting condition

* Make a request

< Read the response

< Parse the response for links

= Normalize the links

< Add the links to a target list

= Parse the response for content

e Check for termination conditions

= EXit or request the next item on your list

September 28, 2001 Spidersin Java 11

Make a Request

* Gets one or more pages
« Opens a socket to a machine on Port 80
= Writes a request:
e “GET /homepage.html HTTP/1.0<CR><LF><CR><LF>"
< Note: you can include any number of headers

= Proceed to read the response

September 28, 2001 Spidersin Java 12

Read the Response

= Use strstr like method to find the end of the header
(CRLFCRLF)
« Parse the headers into name value pairs

= Find the length of the body from the header called “Content-Length”

= This value indicates the length of the body only and excludes the
length of the header

< Read the rest of the reponse (Make sure your read loop reads
the entire response)

= Handle the response based on the content type

September 28, 2001 Spidersin Java 13

Parse the response for anchors

= Find all the elements on the page which will contain URLS -
anchors, frames, images, maps.

= Process the page elements to find the URLs

= Find href attributes in <a> Anchor elements and obtain the
literal string associated with the href

There are at least 4 problems associated with this process:
= HTML is case insensitive regarding attributes

= The ‘=" is NOT required

e “*“ quotes are NOT required

= The string literal may be absolute, site absolute, or relative

September 28, 2001 Spidersin Java 14

The URL Problem

< We would like an anchor as follows:

< Unfortunately, the following is legal

< a href www.sis.pitt.edu/~spring align=LEFT>

e The following address forms should be considered in
normalizing

e Absolute address
“http://www.webpage.com/abc.html”

« Site Absolute address:
“/abc/def.html”

< Relative address:

“xyz.htm”

September 28, 2001 Spidersin Java

15

The URL Problem Continued

= There are additional URL problems that must be
addressed:
« Path permutations
* (e.g. Zabc/mbs.html vs Zabc/def/../mbs.html)

e Default names
* (e.g. /abc/ vs Zabc/index.html

= Machine names
e //augment.sis. pitt.edu/ vs //136.142.116.125

e Once the URL is normalized, add it to a list of URLs
to be checked

September 28, 2001 Spidersin Java

16

Parse the response for Content

= Invoke a method on the page that analyzes the page as per

your spider function:
= Check for images
e Methods for image analysis
= Gather statistics on the page

® Size, links, incoming and outgoing, tables, prices, ectc

Check for site related matters
® Modification date, existence, form, etc
= Look for term occurrence
® Within a page
® Within pages separated by less than n links

e etc

September 28, 2001 Spidersin Java 17

Termination Condition

The easiest termination condition — often used during
development - is to get a single page and stop.

You can also terminate after some number of pages— 1000.

You can terminate at exhausting some finite resource - all the
pages on a given site

You can terminate after some complexconditon — don’t follow
any link trail for more than five links without finding a given
condition — e. g. a particular keyword

September 28, 2001 Spidersin Java 18

Link Depth Termination Condition

= Example of a spider that wanders, but looks for pages with a
keyword:
keyword = college
if(keyword)
{set PageRelevanceCounter=3;
else
if(PageRelevanceCounter)
{set PageRelevanceCounter=CP_PRC-1;
add new reference to refList;

increment refListcounter;}

< IDEA: within 3 hops, we must find ‘college’ or link traversal
of path is terminated

September 28, 2001 Spidersin Java 19

An Exercise

= Use the spider provided in the example. Modify the
spider so that it automatically iterates over the list of
pages recovered. This will require that you put a loop
in a method that starts the search and terminates
when some condition is met — i.e. n pages are
checked, n links are traversed without finding some
information in a page

September 28, 2001 Spidersin Java 20

10

