Overview

= Review of Client-Server paradigm

= Overview of important concepts

= Basic spider design

An example

* An exercise
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Client Server Paradigm

= Basic
= A server is started and listens to a given port for requests
= The client initiates a request
= The server processes the request
= The server sends the response
e Spiders
= A spider assumes http servers are running on standard ports and
proceeds to connect to them asking for a page

= Because the http connection is a simple request and response with an
automatic shutdown the client needs do nothing more than make the
request. The server will close the connection
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Http as a Simple Example

= When using a web browser, here is what happens:

® The user types a request in the browser window:
http://www.sis.pitt.edu/~spring/index.html
® The browser looks up the internet address of www.sis.pitt.edu (136.142.116.2), and
makes a connection to the well known port for http - (80).
® The browser then writes the following request to the socket:

GET /~spring/index. htm http/1.1

® Knowing the client is done, the server looks up the file, and assuming it is found, sends
back the file proceeded by a header:
http:/1.1 200 ok
Content - Type: text/htm
® There are actually a number of other lines between these two but these are the only
required lines. When the server is done with its header, it sends a

<CR><LF><CR><LF> sequence followed by the document.

® When it is done sending the document, it closes the connection.

September 28, 2001 Spidersin Java 4




Sockets
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Selected Methods

= There are more than 20 classes within the java.net package as
well as a number of interfaces and exceptions that need to be
studied.

= There are important classes that need to be used when the
very efficient UDP protocols are used - l.e. the Datagram
classes

e There are a series of classes that are used with web based
applications related to URL'’s

< For our purposes here, there are three classes of interest:
= InetAddress
= Socket
= ServerSocket
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InetAddress Class

Socket programming anticipated numerous schemes for addressing machines
on networks. Most implementations still allow for this, but in reality, there is
only one address type used — internet addresses.
An internet address is a binary identifier that is four bytes long. Humans
have trouble with this long a string of ones and zeros, so two alternate forms
are also used:

® Dotted decimal notations such as the STRING 136.142.116.26

® Domain names such as the STRING cport.sis.pitt.edu
InetAddress class is a final class with methods that provide for conversion:

® InetAddress a = InetAddress.getByName(String)
There are also methods to convert an InetAddress to the dotted decimal
notation (getHostAddress) and domain name (getHostName)
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Socket Class

The Socket Class has a large number of constructors and methods. The
most used form would be:

® Socket S= new Socket(InetAddress a, int port);

This establishes a connection to the process listening to Port port on the
machine at address a.

The Socket class has a number of utility methods to set the characteristics
of the channel and to query attributes of the connection.

Three methods are essential to developing clients and servers:
® getOutputStream() which gets a stream to write to
® getlnputStream() wheich gets a stream to read from

® close() which closes the socket connection.
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Socket In Detall

= Be sure that all exceptions are handled appropriately
| net Addr ess Host ; _
try {// Create a Socket to nake connection

Host = I net Addr ess. get ByName( “ww. pi tt.edu”);
S = new Socket (Host , 80 );

}
catch (UnknownHost Excepti on eh)
{System out.println( "Host not found" );

catch ( |1 OException es )

{Systemout.printin("Can't create socket");
es. print StackTrace();
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Skeleton of a Client

/1 convert dotted decinmal string to an address

| net Address Host = | net Address. get ByName("127.0.0.1");
//open a connection to the host on port 32638

S = new Socket (Host , 32638 );

/1 get the raw i nput and output streanms as object streans
/1 letting Java do encodi ng

Sout = new bj ect Qut put Stream( S.getQutputStreanm() );
Sin = new bj ectl nput Strean{ S.getlnputStrean{) );

/Il wite

Sout.witeObject( “CET filenane http/1.1");

Sout . fl ush();

/] read

response = (String) Sin.readObject();

/1 read response and process it

Sout . cl ose();

Sin.close();

S. close();
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Basic Spider Paradigm

= Establish a starting condition

* Make a request

< Read the response

< Parse the response for links

= Normalize the links

< Add the links to a target list

= Parse the response for content

e Check for termination conditions

= EXit or request the next item on your list
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Make a Request

* Gets one or more pages
« Opens a socket to a machine on Port 80
= Writes a request:
e “GET /homepage.html HTTP/1.0<CR><LF><CR><LF>"
< Note: you can include any number of headers

= Proceed to read the response
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Read the Response

= Use strstr like method to find the end of the header
(CRLFCRLF)
« Parse the headers into name value pairs

= Find the length of the body from the header called “Content-Length”

= This value indicates the length of the body only and excludes the
length of the header

< Read the rest of the reponse (Make sure your read loop reads
the entire response)

= Handle the response based on the content type
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Parse the response for anchors

= Find all the elements on the page which will contain URLS -
anchors, frames, images, maps.

= Process the page elements to find the URLs

= Find href attributes in <a> Anchor elements and obtain the
literal string associated with the href

There are at least 4 problems associated with this process:
= HTML is case insensitive regarding attributes

= The ‘=" is NOT required

e “*“ quotes are NOT required

= The string literal may be absolute, site absolute, or relative
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The URL Problem

< We would like an anchor as follows:

<A HREF=“http://www.pitt.edu/~spring/index.html>
< Unfortunately, the following is legal

< a href www.sis.pitt.edu/~spring align=LEFT>

e The following address forms should be considered in
normalizing

e Absolute address
“http://www.webpage.com/abc.html”

« Site Absolute address:
“/abc/def.html”

< Relative address:

“xyz.htm”
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The URL Problem Continued

= There are additional URL problems that must be
addressed:
« Path permutations
* (e.g. Zabc/mbs.html vs Zabc/def/../mbs.html)

e Default names
* (e.g. /abc/ vs Zabc/index.html

= Machine names
e //augment.sis. pitt.edu/ vs //136.142.116.125

e Once the URL is normalized, add it to a list of URLs
to be checked
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Parse the response for Content

= Invoke a method on the page that analyzes the page as per

your spider function:
= Check for images
e Methods for image analysis
= Gather statistics on the page

® Size, links, incoming and outgoing, tables, prices, ectc

Check for site related matters
® Modification date, existence, form, etc
= Look for term occurrence
® Within a page
® Within pages separated by less than n links

e etc
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Termination Condition

The easiest termination condition — often used during
development - is to get a single page and stop.

You can also terminate after some number of pages— 1000.

You can terminate at exhausting some finite resource - all the
pages on a given site

You can terminate after some complexconditon — don’t follow
any link trail for more than five links without finding a given
condition — e. g. a particular keyword
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Link Depth Termination Condition

= Example of a spider that wanders, but looks for pages with a
keyword:
keyword = college
if(keyword)
{set PageRelevanceCounter=3;
else
if(PageRelevanceCounter)
{set PageRelevanceCounter=CP_PRC-1;
add new reference to refList;

increment refListcounter;}

< IDEA: within 3 hops, we must find ‘college’ or link traversal
of path is terminated
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An Exercise

= Use the spider provided in the example. Modify the
spider so that it automatically iterates over the list of
pages recovered. This will require that you put a loop
in a method that starts the search and terminates
when some condition is met — i.e. n pages are
checked, n links are traversed without finding some
information in a page
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