ing@#map.pittedu
m is":pjijt't.edu/~spr1"n g

Overview

= Context

= Variables

= Basic Operators
e Basic /0

e Pattern Matching
< File Operations

« Examples
= Concordances
* Forms

* DBMS access

September 28, 2001 Introduction to PERL 2

Context
Producing Pages Statically

Browser
Page
Returned
September 28, 2001 Introduction to PERL 3
Context

Producing Pages Dynamically
Pege RN

Found

Page
Request
EEEE—

Page

Composed
Returned P

Program gets input from the server
and writes out an HTML page

September 28, 2001 Introduction to PERL 4

Why PERL

= PERL, “Practical Extraction and Report Language” is a
interpreted language
= The strengths of PERL include:
= String handling
= Regular expression capabilities
= File handling
< It was a natural choice of Unix System Administrators as a
familiar rapid prototyping tool to produce reports or pages of
HTML

= Itis now being replaced by more object oriented approaches

September 28, 2001 Introduction to PERL 5

Variables

e Variables in PERL are not declared in advance
= They are assigned and defined in context

e There are three basic variable types

® $name ::= a simple scalar; type may be real, integer, string, etc.
® @name ::= an array of objects -- may be scalar, array, or other
® %name ::= a hashed array -- items are identified by a name.

< Once array (and hash) variables are defined, some other things
may be assumed:

® 3$name[n] ::=is the n+1th element of @name
® S$#name ::= the number of items in @name
® @name[n-m] or %name{'hash’, ‘hash2'} ::= slice of array

® $name[-1]::= the last element of the array @name

September 28, 2001 Introduction to PERL 6

General “Special” Variables

There are dozens of special variables defined in PERL.
The most ubiquitous and important of these is $_
® the default input and the default pattern search space

« The default variable for all loops
« The default variable for file 170

* The default space searched in a pattern match
@_ is the parameter array for subroutines
Other useful special variables include:
® $.Is the current input line number of last file read
® @ARGV are the arguments to the script

® %ENV are the environment variables - in a hash

September 28, 2001 Introduction to PERL

“Special” Variables Related to
Pattern Matching

= $& is the string matched by the last successful pattern match

e §,$&, $ is the pre, match, and post string of the last successful
pattern match

* $1--$9 the subpatterns in the last pattern match

September 28, 2001 Introduction to PERL

Basic Operators

= PERL has most of the operators one would find in c.

e These include
e +-*/%
e += etc
e 4t --

e <>=<=etc.

< you also have
* X -- string multiplication
e . --string concatenation
« |tgtlege-- for string comparison
= eg ne cmp -- for string equality checking
= =~ binds a pattern match to a scalar

« |~ same but negates a result.
September 28, 2001 Introduction to PERL

Basic Statements -- flow control

if (expression) {block} else {block}

= until (expression {block} continue {block}

= while (expression) {block} continue {block}
= For, while, and other blocks have

< Redo

= Next

e Last

= for (expression) {block}

= foreach var (list) {block}

September 28, 2001 Introduction to PERL

10

Basic /0

« To open afile:
open (FILEHNDLE, $accessmode.$filenamestr)
® accessmodes are <=read >=write +>= create >>=append
= Context is important in input
@var = <FILEHNDLE> reads an entire file (“array context”)
$var = <FILEHNDLE> reads one line (“scalar context™)
<> STDIN or the files in ARGV
getc FILEHNDLE or STDIN
= To write a file, or STDOUT
Print FILEHNDLE list
® There is also binary reads and writes
= File positioning
seek FILEHNDLE position whence
tell FILEHNDLE

September 28, 2001 Introduction to PERL 11

File Operations

* Several operators return information about afile. The
most useful include:

* -r-w X Fileisreadableiwritable/executable

* -e-zFileexists/ haszero size.

» -f-dFileisaplainfile, adirectory.

* -sFileexistsand hasnon-zero size. Returnsthe size.

* -M -A -C Filemodification/access/inode-change time (days)
* The—soption allowsthingslike

Read FHNDL, -s FHNDL

* Other interesting functions include the ability to change
mode (chmod), change owner (chown), truncate afile,
make directories, and remove directories

September 28, 2001 Introduction to PERL 12

Pattern Matching

= Pattern matching makes use of patterns and replacements to
do several things:
= Options when searching and replacing include:

® ¢ =continue from previous match
® g = global

® | = case insensitive

® m = accept embedded newlines

® o0 = interpolates variables only once
® s = include newline as a. Character

® x = allow for extensions
= Search a string -- /pattern/option

= Search and replace -- s/pattern/replace/option

= In the pattern, []s define a single character and ()s enclose a
subpattern to be remembered

September 28, 2001 Introduction to PERL 13
Patterns
= Dbetween the /'s include things like the following:
* XYZ ::= the characters themselves
* XYZ$::= the characters themselves, at the end of a line
e ~NXYZ .= the characters themselves, at the start of a line
* x(a]b)f .= x followed by a or b followed by f
* Xy.z ::= x followed by any character followed by y
followed by any character by z
* Xx* =0 o0r more x's
e y+ ‘= one or more y‘s
e 77 :=0o0rone z's
September 28, 2001 Introduction to PERL 14

Some Pattern Matches

Find out if my name is in a string
$mystr~=/[m M]ichael [Bb]?[.]? [Ss]pring/

Find and replace all tags in a string
$mystr~=s/<[~>]*>/There was a tag here/g

Count the number of the’s in a string
while ($mystr~=/the/cg) {cnt++;}

Find the text of all well formed anchors
while ($mystr~-=/<[Aa] [*>]>(["<])</[Aa]>/cQg)
{print $1;}

September 28, 2001 Introduction to PERL 15

A Few String Functions

chomp LIST

* Removes line endings from all elements of the list; returns the (total)
number of characters removed.

chop LIST
* Chops off the last character on all elements of the list;
index STR, SUBSTR [, OFFSET]
* Returnsthe position of SUBSTR in STR at or after OFFSET. If the
substring is not found, returns -1
length EXPR
e Returnsthe length in characters of EXPR.
Ilc (uc) EXPR
e Returns alower (upper) case version of EXPR.
substr EXPR, OFFSET [, LEN]

» Extractsasubstring out of EXPR and returnsit. If OFFSET is negative,
counts from the end of the string. If LEN is negative, |eaves that many
characters off the end of the string.

September 28, 2001 Introduction to PERL 16

A Few Array Functions

e pop [@ARRAY], push @ARRAY, LIST

* Pops off and returns the last value of the array.
Pushes the values of the list onto the end of the array.

* reverse LIST
* |narray context: returnsthe LIST in reverse order.

o split[PATTERN [, EXPRy [, LIMIT]]]

* Splitsastring into an array of strings, and returnsit. LIMIT specifies the
max number of fields. If PATTERN is omitted, splits on whitespace
* join EXPR, LIST
* Joinsthe separate strings of LIST into a single string with fields separated
by the value of EXPR, and returns the string.
* sort [SUBROUTINE] LIST

e Sortsthe LIST and returns the sorted array value. If SUBROUTINE is
specified, gives the name of a subroutine that returns less than zero, zero, or
greater than zero, depending on how the elements of the array, available to
the routine as variables $a and $b.

September 28, 2001 Introduction to PERL 17

A Couple Hash Functions

¢ values %HASH

* Returnsanormal array consisting of all the values of the
named hash keys

* %HASH
* Returnsan array of al the keys of the named hash.
* each %HASH

* Returns a 2-element array consisting of the key and value for
the next value of the hash. After all values of the hash have
been returned, an empty list is returned. The next cal to each
after that will start iterating again.

September 28, 2001 Introduction to PERL 18

Four Sample Programs

= Concordance: A simple perl program that simply counts the occurrence of
words in a file — it is not cgi script related, but it could be used to index
documents on a web site. It demonstrates file 1/0, string manipulation,
and hashes

= HTML Page Analysis: Shows the use of pattern matching to remove tags
from a page and to analyze the tags on a page

e HTML Form Porcessing: Shows a page with a form and a CGI perl script
using cgi-lib.pl to parse the values

= DBMS Access: A simple perl program to access an access DBMS

September 28, 2001 Introduction to PERL 19

Program to Produce a
Concordance

= produce a count of all the words in a file
#! [usr/ bin/perl
open DATA, "testparse.dat";
whi | e(<DATA>)

{ foreach $term (split)
{
$aw{ $t er ni ++;
$t wH+;
} }
}
September 28, 2001 Introduction to PERL 20

10

Concordance Program Output 1

a printout of the results sorted in alphabetical order
$i =0;
print "\nHere is the list al phabetically\n";
@ist = sort {(uc $a) cnp (uc $b) } keys %aw,
foreach (@i st)

{

if ($i ++9%8==0) {print "\n";}

$a=substr $_ . " ", 0, 16;
print $a . ": " . $aw{$_} . "\t";

}

print "\ n\n";

September 28, 2001 Introduction to PERL 21

Concordance Program Output 2

a printout of the results sorted in order of occurrence
$i =0;
print "\nHere is the list in terns of frequency\n";
@ist = sort {$aw{$a} <=> $aw{ $b} } keys %aw
foreach (@i st)

{
$i ++,
if ($i9%8==0) {print "\n";}
$a = substr $_ . " ", 0, 16;
print $a . ": " . $aw{$_} . "\t";
}
print "\ n\n";
print "\nThere were ". $tw. " words in the file\n";
September 28, 2001 Introduction to PERL 22

11

HTML Page Analysis:
Text without Tags

for an html file with tags
#!' [usr/bin/perl
open DATA, “page.htm";
read DATA, $filestring —s DATA
$cl eanstr ~=s/<[">]*>/]g;
@l = split /[\n\t\.\,\d]+/, cleanstr;
foreach $term (@|l)

{
$aw{ $t er ni ++;
St wH+;
}
}
September 28, 2001 Introduction to PERL

23

HTML Page Analysis: Tags

#for an html file with tags
#! /usr/bin/perl
open DATA, “page.htm";
read DATA, S$filestring —s DATA
while($filestring ~=s/(<[*>]*>)//cQ)
{
push @ags, $1;

}

foreach $tag (@ ags)
{ $aw{ $t ag} ++;
St wH+;

}

September 28, 2001 Introduction to PERL

24

12

AForm

<form method="POST"
action="http://augment.sis.pitt.edu/cgi-bin/comm_form.cgi">
<P>Name:

<input type="text" SIZE = "40" MAXLENGTH="80" name="name" value =
"anonymous”>

<P>Subiject:

<input type="text"SIZE = "40" MAXLENGTH="80" name="subject" value =
"None”>

<P>Comments:

<textarea NAME="comment" ROWS=8 COLS=40>

type your comment or poem here</textarea>

<input type="submit" name="SSC" value="Send Comment">
<input type="reset" value="Clear Comment">

</form>

September 28, 2001 Introduction to PERL 25

Perl script to process form (part 1)

#!/ opt/ bi n/ perl
require "cgi-lib.pl";
$COMMENT_DIR = "insert an absolute path name here";
$COW FI LE = "testcomm dat ";
$COW LOG = "“testcomm| og”;
print "Content-type:
t ext/ ht M\ n\ n<ht M >\ n<head>\n<title>".
"COVWMENT</ titl e>\ n</ head>\ n";
#Parse the formargunents and exit if error
&ReadPar se(*val ues) ;
#Use the information
#1f any field is mssing, conplain!
if ((! $values{"name"}) || (! $val ues{"subject"}) ||
(! $val ues{"coment"}))
{ print "<body>nessage\n</body></htm >\n";
exit 0;}

September 28, 2001 Introduction to PERL 26

13

Perl script to process form (part 2)

#OK, we have all the data. Wite it to a file

$I f_name = ">>" . $COMMENT_DI R . $COW LOG
$cf_name = ">>" . $COMMENT _DIR . $COWM FI LE;

$tinme = localtine();

$val ues{"subj ect"}=~s/\t/ /g;

$val ues{"name"}=~s/\t/ /g;

$startpos = (-s $SCOWENT_DIR . $COWMM FI LE);

if (!$startpos) {$startpos=0;}

open(QUT, $cf_nane);

print OUT "DATE:\t", S$tinme, "\n";

print QUT "AUTHOR \t", $val ues{"nane"}, "\n";
print OQUT "SUBJECT:\t ", $values{"subject"}, "\n";
print OUT "MESSAGE:\ n", $values{"comment"}, "\n\n";
cl ose(QUT);

September 28, 2001 Introduction to PERL 27

Perl scriptto process form (part 3)

$length = (-s $COMMENT_DIR . $COMM FILE) - $start pos;
open(LOG $I f_nare);

seek LOG 0, 2;

print LOG $tinme , "\t", $values{"name"}, "\t",

$val ues{"subject"}, "\t",$startpos, "\t", $length, "\n";
cl ose (LOG;

print "<body><hl>Thank you, ", $val ues{"nane"},
"</ h1>\n";

print "Thank you for your coments.\n";

print "<P><A HREF=\"http:\/\/augnment.sis.pitt.edu\/cgi-
bi n\/ comm vi ew. cgi \ ?start =",

0, "& ength=", 0,"\" >Cick here to see a |ist of
comment s</ A></ LI >\ n";

print "</body></htm >\ n";
exit O;

September 28, 2001 Introduction to PERL 28

14

