
Adaptive Visualization Component of a Distributed
Web-based Adaptive Educational System

Peter Brusilovsky and Hoah-Der Su

School of Information Sciences
University of Pittsburgh

Pittsburgh PA 15260
peterb@mail.sis.pitt.edu

Abstract. Adaptive visualization is a technology that can enhance the power of
program visualization. The idea of adaptive visualization is to adapt the level of
details in a visualization to the level of student knowledge about these
constructs. This paper presents an adaptive visualization system, WADEIn, that
was developed to explore visualization of expression execution during program
execution - a under-explored area in visualization research. WADEIn has been
designed as a component of our distributed Web-based adaptive educational
system KnowledgeTree, however it also can be used as a standalone
educational tool. The system has been pilot-tested in the context of a real
university course with 40 students and is available on the Web for public use.

1 Introduction

Program visualization is one of the most powerful educational tools in computer
science education. It can provide a clear visual metaphor for understanding
complicated concepts and uncover the dynamics of important processes that are
usually hidden from the student’s eye. Many papers and projects have been devoted to
visualization of program execution. Visualization has been explored in the context of
machine level languages [9], various high level languages [12; 13; 18], and
algorithms and data structures [1]. While several studies show the positive value of
visualization, some other studies have demonstrated that visualization is not a silver
bullet [10; 17]: often in the presence of a well-developed visualization the students
still fail to understand what is happening inside a program or an algorithm. In our past
research, we have explored several ways to improve the efficiency of visualization [3;
7]. One of the directions we have explored was adaptive visualization.

Adaptive visualization is based on an assumption that a student may have different
level of knowledge of different elements of a program or an algorithm that is being
visualized. For the case of a program, the student may know some high-level
language constructs or machine level language commands better than others. For the
case of algorithm animation the student may understand some steps of an algorithm
better than others. In this context, regular visualization that animates all constructs or
steps for each user with the same level of details may not be the best approach. For a
troublesome construct the level of detail may not be deep enough to for the student to

understand its behavior. At the same time, by showing a visualization of a well-
understood construct with unnecessary details, the visualization system distracts the
student and make it harder to focus on and thus comprehend the behavior of the
constructs that are still poorly understood by the student.

Adaptive visualization matches the level of details in visualization of each
construct or step to the level of student knowledge about it. The less the level of
understanding of a construct, the greater the level of details in visualization.
Naturally, with a demonstrated increase in student knowledge about specific
constructs, the level of visualization of those constructs should decrease. This
approach allows a student to focus attention on the least understood components
while still being able to understand the whole visualization. Our experimental
evaluation of several kinds of enhanced visualization in the context of program
debugging has confirmed our hypothesis that adaptive visualization can increase the
power of visualization [2].

Our current work continues our research on adaptive visualization in the slightly
different context of visualization of expression evaluation in C programming
language. For the students of our programming and data structure course based on C
language, the expression evaluation is one of the most difficult to understand parts.
They have problems with both understanding the order of operator execution in a C
expression and understanding the semantics of operators. To help the students, we
have developed a Web-based Adaptive Expression Interpreter (WADEIn, pronounced
as wade-in). WADEIn has been designed as a component of our distributed Web-
based adaptive educational system KnowledgeTree; however it also can be used as a
standalone educational tool. The system has been pilot-tested in the context of a real
university course with 40 students and is available on the Web for public use.
WADEIn and the technology of adaptive visualization used in it are the central topics
of this paper. The following sections present, in order: the user interface, the
architecture of WADEIn, and its use in two contexts: as a component of
KnowledgeTree and as a standalone tool. At the end we discuss our research
contribution and the plans of future work.

2 WADEIn: The User's View

The front-end of WADEIn is an expression interpreter that can work in either
exploration or evaluation mode. In exploration mode the user can observe the process
of evaluating a C expression step-by-step. An expression can be typed in or one can
be selected from a menu of suggested expressions. At the beginning of evaluation, the
system indicates the order in which various operations in the expression will be
performed (Fig. 1). After that, the system starts visualizing the execution of each
operation. The goal here is to show the results and the process of executing an
operator. To show the results, the system visualizes a "shrinking" copy of the original
expression and the values of all involved variables.

The execution of every operation is split in several sub-steps. At first, the system
highlights the operations to be executed and its operands on the "shrinking" copy of
the expression and re-writes it to the evaluation area field (gray rectangle in the

center of the window). Next, it shows the value of the expression (2 on Fig. 1). In
case of assignment and increment/decrement operations, WADEIn also shows the
new value of the variable involved (Fig. 1). On the next sub-step, it replaces the
whole highlighted operation in the "shrinking" copy with the calculated value. If a
variable has changed its value as a side effect of evaluation, it also changes the value
of the variable (Fig. 2). On this sub-step the system may use animation by "flying" the
numbers from the working field to their destinations in an expression or in the
variable area. Finally, the system removes all highlighting, "shrinks" the simplified
expression, and prepares for the next step.

Evaluation
area

Shrinking
copy

Fig. 1. The user starts working with an expression. Numbers in circles show the order of
calculation. The applet starts visualizing the execution of the first operation ++K (the current
value of variable K shown below is 1).

The level of detail in executing an operation depends on the user’s current level of
knowledge about it. For the minimal level of knowledge (1.0), the system will
perform all sub-steps and will show the animation in a slow motion. As the user
learns an operation increasingly better and his or her knowledge level improves from
1 to 5, the system degrades gracefully the level of detail in the visualization by
increasing the speed of animation and removing some sub-steps. For the maximal
level of knowledge (5.0) there will be no sub-steps and no animation - the operation
will be executed in one step.

To control the process of expression interpretation, the user has six buttons. First
and Last let the user move to the beginning or the end of expression execution;
Next_OP and Prev_OP let the user move in one step to the beginning of interpretation
of the next or previous operation; Next and Prev move the user one adaptive step
forward and backwards. Normally, the user would use only Next button (or simply hit

Return key). Other buttons can be used to watch the same operations and sub-steps
again and again forwards and backwards or to skip sub-steps or operations.

Fig. 2. The results of calculating an operation are "flying in" to replace the original operation
and operands in a working expression and the old value of the variable involved.

To show to the user the system's opinion about his or her knowledge, we use
progress indicator bars also known as a skillometer. This convenient interface feature
that makes the user model viewable for a student was introduced in Carnegie Mellon
cognitive tutors [16] and has been used since that in some other ITS [19]. One of our
assumptions is that even passive watching of the visual execution of various operators
contributes to student's knowledge about these operators. After visual execution of
every expression, the progress indicators are updated. A more reliable way to check
student knowledge and to update the student model is the evaluation mode. The
student’s work with an expression in evaluation mode starts with a request to indicate
the order of execution of the operations in the expression (Fig. 3). After that, the
system shows the correct of execution, and starts evaluating an expression (Fig. 4).
The process of evaluation is quite similar to the evaluation in an exploration mode
(the execution of every operation is adaptively visualized), but two aspects are
different. First, the students have no freedom in navigation through the solution. Only
two actions are possible - quit an exercise and move to the next operator (Fig. 4).
Second, if the student knowledge of the current operation is low, the system will not
calculate the result of the operation, but instead requests it from the user (Fig. 4). If
the user makes an error, the correct result is provided, so the calculation of the
expression will always be correct.

Fig. 3. At the beginning of executing an expression in the evaluation mode, the system requests
the user to mark the order in which the operators will be executed.

Fig. 4. In evaluation mode, the system requests the result of each operation from the user if his
or her level of knowledge about this operation is low.

3 The Implementation

Architecturally, WADEIn is a distributed client-server application written in Java. It
consists of a client-side applet and a servlet-based server side. The server side
maintains authentication and provides a top-level interface for the user. It also accepts
the information about the student progress from the applet, provides information
about the student to all components and hosts the student model updating interface.

The client and the server side maintain two-way communication, however, each
way is implemented differently. Server to client communication is maintained by
parameter passing. The interpreter applet is very flexible and can be controlled by
multiple parameters. The parameters define the mode of work (exploration,
evaluation, or both), the starting level of user knowledge, the order and subset of
operations visible on the progress indicator bar, the expressions that will be shown in
the menu of expressions to choose, and a few other things. This flexibility allows the
applet to be used in several contexts. In WADEIn systems the set of parameters are
generated by a presentation server. More exactly, the server generates the whole
HTML page that embeds the applet, including necessary parameters in the <applet>
tag. In particular, it uses parameters to pass the current level of student knowledge
about each operator. However, the requirement to use the interpreter applet with a
server seriously reduces the applicability of this applet in a real classroom. The
mechanism of parameters lets teachers who are interested to use the interpreter to
create a static embedding page to host the applet. The values of parameters on this
static page can be set to tune the applet to the needs of the class. In this context the
applet will be able to function without the server component (though the student
model will not be stored from session to session).

Client to server communication is essentially reporting the results of the student's
work back to the server. After the student completes the work with an expression, the
applet sends all information in the form of raw events to the user modeling server
(next section explains it in more details). The communication with the user modeling
server is implemented using a simple http-based protocol that is very similar to the
one we have used in our earlier distributed system PAT-InterBook [6].

4 The Student Modeling

The student modeling component of WADEIn was developed following our
centralized user modeling approach [4; 5]. One of the main ideas of this approach is
that an educational system is composed of several adaptive components that all use
the same central student model. The central student model assembles the information
about the student from multiple sources. The student model is formed on the basis of
the domain model that is a network of elementary knowledge elements. It stores an
evidence of student knowledge for each of these knowledge elements separately. In
our case, every C operator is an independent knowledge element. At the same time,
the central student model is not a classic overlay that "cooks" all evidences about
student knowledge of an element into a single number. In our central model the
information is stored in a relatively "raw" form that avoids information loss and

distinguishes different sources and events. This is important since the student model
is used by different adaptive components that have different needs. Processing a flow
of events into a classic vector overlay is usually done for the needs of one of the
components and may lose an information important for other components.

WADEIn uses two different sources that can produce four kinds of events for the
central student model. The main source is the interpreter applet that produces three
types of events. The first type is "the student has seen a visual execution of an
operator". The parameter for the event is the level of visualization. The second event
is "the student has performed an operation". The third is "the student has identified
the order of execution for an operator". The parameter for the latter two events is
correctness. These events are sent to the user modeling server after the completion of
every expression.

The second source of information is the student himself. The student model server
maintains an open student model [8] and provides an interface where the students can
self-evaluate their knowledge of every operator. All these events are stored
independently and can be retrieved by any client of the central student model.

As mentioned above, the interpreter applet itself uses a regular overlay model for
its own needs - the level of knowledge of each operator is modeled and visualized by
progress indicators as a real number from 1 to 5. This overlay model is obtained as a
projection of the central student model by applying a polynomial formula (1).

K = a1 Nuser + a2 Nseen + a3 Neval (1)

Here Nuser, is the user own evaluation, Nseen is the number of times the user have seen
an evaluation and Neval is the number of times the user has done a correct evaluation.
For experimental purposes, weights a1-3 can be provided as applet parameters.

5 WADEIn as a Component of KnowledgeTree

WADEIn was designed to serve as one of the activity servers for our KnowledgeTree
learning portal. The KnowledgeTree portal allows a teacher to create a course support
Web site that can use course materials distributed among different servers. With
KnowledgeTree, a teacher is able to specify the objectives for every lecture and to
request relevant learning activities of different kinds from different activity servers.
At runtime the portal will retrieve relevant activities from different activity servers
according to the objectives of the lecture and student knowledge (Fig. 5). The kinds of
learning activities currently provided by WADEIn are a sets of expressions to be
evaluated in either exploration or evaluation mode. Each set is developed to practice
one or more operations.

Currently, KnowledgeTree/WADEIn does not support full-featured adaptive
sequencing, but it does support mastery learning [11]: the student can work with the
expressions until the target level of knowledge for the operations to be learned is
achieved. In the future we are planning to add full adaptive sequencing of expressions
to the WADEIn system - i.e., an ability to generate a small set of most appropriate
examples at any point of a student's work with the system. This will let us use the

system not only in conjunction with a course but also for self-guided Web-based
education.

Fig. 5. KnowledgeTree, a portal for accessing distributed Web-based course support material.
The window shows a view of a lecture with associated learning material. Different items are
usually served by different activity servers.

6 Conclusion

This paper presents WADEIn system that lets the students explore the process of
calculating the value of expressions in C language and evaluates the student
knowledge of various C operators. WADEIn uses adaptive visualization to let
students focus their attention on less understood C operators. The system is designed
to be a component of a large adaptive educational system based on centralized student
modeling. Currently we use WADEIn as a component of a learning portal
KnowledgeTree, however, the interpreter applet that is a core of the system could also
be used without any portal or server. The system was pilot-tested in a practical C
course and got very positive student feedback. Many students considered WADEIn as
the most useful tool among all tools that are currently connected to the
KnowledgeTree portal. Currently we are running a larger and more formal evaluation

of the system in an introductory programming class. Our plans are to provide
WADEIn as a free tool that could be used for teaching programming in many places.

In addition to the practical need, the work on WADEIn was stimulated by two
research goals. Our first goal is to develop an open architecture for adaptive
distributed educational systems. To achieve a progress in this direction, we need set
of diverse adaptive components that can be used to explore various aspects of the
architecture and evaluate different student modeling approaches. In this context, an
adaptive visualization system serves as one of the components.

Our second goal is to explore adaptive visualization as a way to increase the
educational value of program visualization. It has been shown in several experiments
[10; 17] that the educational effect of observing visualization is unexpectedly low.
Different approaches to make visualization work have been suggested [3; 14; 15].
Adaptive visualization is one of these approaches. Our earlier experiments show
promising results [3] and we want to continue this direction of work. Along this
direction we plan a series of experiments with WADEIn to evaluate different aspects
of adaptive visualization.

References

1. Brown, M. H. and Najork, M. A.: Collaborative Active Textbooks: A Web-Based
Algorithm Animation System for an Electronic Classroom. In: Proc. of IEEE
Symposium on Visual Languages (VL'96), Boulder, CO (1996) 266-275,
available online at http://www.research.digital.com/SRC/JCAT/vl96

2. Brusilovsky, P.: Program visualization as a debugging tool for novices. In: Proc.
of INTERCHI'93 (Adjunct proceedings), Amsterdam (1993) 29-30

3 . Brusilovsky, P.: Explanatory visualization in an educational programming
environment: connecting examples with general knowledge. In: Blumenthal, B.,
Gornostaev, J. and Unger, C. (eds.) Human-Computer Interaction. Lecture Notes
in Computer Science, Vol. 876. Springer-Verlag, Berlin (1994) 202-212

4 . Brusilovsky, P.: Student model centered architecture for intelligent learning
environment. In: Proc. of Fourth International Conference on User Modeling,
Hyannis, MA, MITRE (1994) 31-36

5. Brusilovsky, P.: Intelligent learning environments for programming: The case for
integration and adaptation. In: Greer, J. (ed.) Proc. of AI-ED'95, 7th World
Conference on Artificial Intelligence in Education, Washington, DC, AACE
(1 9 9 5) 1 - 8 , a v a i l a b l e o n l i n e a t
http://www.contrib.andrew.cmu.edu/~plb/papers/AIED-95.html

6. Brusilovsky, P., Ritter, S., and Schwarz, E.: Distributed intelligent tutoring on the
Web. In: du Boulay, B. and Mizoguchi, R. (eds.) Artificial Intelligence in
Education: Knowledge and Media in Learning Systems. IOS, Amsterdam (1997)
482-489

7 . Brusilovsky, P. L.: Adaptive visualization in an intelligent programming
environment. In: Gornostaev, J. (ed.) Proc. of East-West International
Conference on Human-Computer Interaction, Moscow, ICSTI (1992) 46-50

8. Bull, S., Brna, P., and Pain, H.: Extending the scope of the student model. User
Modeling and User-Adapted Interaction 6, 1 (1995) 45-65

9. Butler, J. E. and Brockman, J. B.: A Web-based learning tool that simulates a
simple computer architecture. SIGCSE Bulletin - inroads 33, 2 (2001) 47-50

10. Byrne, M. D., Catarambone, R., and Stasko, J. T.: Evaluating animations as
student aids in learning computer algorithms. Computers & Education 33, 5
(1999) 253-278

11. Corbett, A. T. and Anderson, J. R.: Student modeling and mastery learning in a
computer-based programming tutor. In: Frasson, C., Gauthier, G. and McCalla,
G. I. (eds.) Intelligent Tutoring Systems. Springer-Verlag, Berlin (1992) 413-420

12. Domingue, J. and Mulholland, P.: An Effective Web Based Software
Visualization Learning Environment. Journal of Visual Languages and
Computing 9, 5 (1998) 485-508

13. Haajanen, J., Pesonius, M., Sutinen, E., Tarhio, J., Teräsvirta, T., and Vanninen,
P.: Animation of user algorithms on the Web. In: Proc. of VL '97, IEEE
Symposium on Visual Languages, IEEE (1997) 360-367, available online at
http://www.cs.helsinki.fi/research/aaps/Jeliot/vl.ps.gz

14. Hansen, S. R., Narayanan, N. H., and Schrimpsher, D.: Helping learners visualize
and comprehend algorithms. Interactive Multimedia: Electronic Journal of
Computer-Enhanced Learning 2, 1 (2000)

15. Hundhausen, C. D. and Douglas, S. A.: Using Visualizations to Learn
Algorithms: Should Students Construct Their Own, or View an Expert's? In:
Proc. of IEEE Symposium on Visual Languages, Los Alamitos, CA, IEEE
Computer Society Press (2000) 21-28, available online at
http://lilt.ics.hawaii.edu/~hundhaus/writings/VL2000-Experiment.pdf

16. Koedinger, K. R., Anderson, J. R., Hadley, W. H., and Mark, M. A.: Intelligent
tutoring goes to school in the big city. In: Greer, J. (ed.) Proc. of AI-ED'95, 7th
World Conference on Artificial Intelligence in Education, Washington, DC,
AACE (1995) 421-428

17. Stasko, J., Badre, A., and Lewis, C.: Do Algorithm Animations Assist Learning?
An Empirical Study and Analysis. In: Proc. of INTERCHI'93, New York, ACM
(1993) 61-66

18. Tung, S.-H. S.: Visualizing Evaluation in Scheme. Lisp and Symbolic
Computa t ion 1 0 , 3 (1998) 201-222, avai lable onl ine at
ftp://140.125.81.71/pub/tungsh/lasc.ps.Z

19. Weber, G. and Brusilovsky, P.: ELM-ART: An adaptive versatile system for
Web-based instruction. International Journal of Artificial Intelligence in
Education 12, 4 (2001) To appear

