
Database Exploratorium: A Semantically Integrated
Adaptive Educational System

Peter Brusilovsky1, Antonija Mitrovic2
Sergey Sosnovsky1, Moffat Mathews2,

Michael Yudelson1, Danielle H. Lee1, Vladimir Zadorozhny1
1 University of Pittsburgh, School of Information Sciences,
135, North Bellefield ave. Pittsburgh, PA 15260, USA

2 University of Canterbury, Dept. of Computer Science and Software Engineering
Private Bag 4800, Christchurch 8140, New Zealand

peterb@pitt.edu, Tanja.Mitrovic@canterbury.ac.nz,
sosnovsky@gmail.com, moffat@cosc.canterbury.ac.nz,

myudelson@gmail.com, suleehs@gmail.com, vladimir@sis.pitt.edu

Abstract. With the growth of adaptive educational systems available to
students, integration of these systems is changing from an interesting research
problem into an important practical task. One of the challenges that need to be
accepted on the way is the development of mechanisms for student model
integration. The architectural principles and representation technologies
employed by the adaptive educational systems define the applicability of a
particular integration approach. This paper overviews the existing mechanisms
and detail one of them: the evidence integration.

1 Introduction

Adaptive Web-based Educational Systems (AWBES) emerged into an active research
field over 10 years ago [1]. Since that time, a number of adaptive educational systems
available on the Web has been constantly increasing. In some popular subject areas
the “density” of AWBES is reaching the point where several adaptive systems are
available. In most of the cases, these systems do not compete, but rather complement
each other making it possible and even desirable to use these systems in parallel to
teach a specific subject like physics, algebra, or programming. An integrated “mega-
tutor”, a vision shared by many AIED experts [2-5] in the early days of AWBES
becomes a practical problem.

From our prospect, the main challenge of using several AWBES in parallel as a
distributed system is to achieve “true integration” and make the whole more than the
sum of its parts. On the student side, it means that a student should be able to use
several systems in parallel transparently and with no additional overhead. A single
login (required by almost all AWBES) should be sufficient to work with any numbers
of systems involved into teaching the same subject. On the system side, it means that
each of the participating systems should have a chance to increase the quality of
student modeling and adaptation using integrated evidence about the student, which
was collected by all participating AWBES. Achieving both kinds of integration is a
reasonable technical challenge, which could be best supported by a dedicated
integration framework such as Medea [6] or ADAPT2 [7].

The major problem in the process of building a distributed AWBES for a
specific subject is, however, not technical, but conceptual. To benefit from their
complementary knowledge about the same student, two AWBES need to understand
each other’s approach to represent information about the student. This is very hard to
achieve in practice since two different systems, even in the same subject area, are
typically using very different student models. To achieve progress in conceptual
integration of multiple AWBES we need to learn how to translate information
collected by one system into format, which could be understood by another system.

The project presented in this paper attempted to explore a problem of AWBES
integration and distributed student modeling using a practical, but challenging case of
two essentially different models – a concept-based overlay and a constraint-based
model. Our project was motivated by a practical goal – building a distributed AWBES
for an important domain of SQL programming. Several components of this AWBES
were already integrated into a “Database Exploratorium” using ADAPT2 framework
[8]. Among these components were WebEx, a system for interactive example
exploration and a SQL-KnoT, a system for generating and evaluating database
questions. These systems shared the same domain model, so their integration was
relatively straightforward. The paper is focused on the most challenging step of the
integration process: the inclusion of a well-known Intelligent Tutoring system SQL-
Tutor [9], with its substantially different mechanisms of domain and user modeling.

The paper is organized as follows. Sections 2 and 3 introduce the systems being
integrated – Database Exploratorium and SQL Tutor including the employed
mechanisms of student modeling. Section 4 presents in details our approach to
AWBES integration, which is based on semantic-level mapping between the domain
models. Section 5 summarizes the results of the classroom study of the integrated
system. It concludes with a summary of the work done and a discussion of future
plans.

2 Database Exploratorium

The Integrated Exploratorium for Database Courses [8] has been developed in the
University of Pittsburgh to investigate the technical problems and the pedagogical
benefits of using several kinds of interactive tools in a single learning environment.
By the time we started the SQL Tutor integration project, the Exploratorium had
already provided personalized access to three types of interactive learning activities:
annotated examples, self-assessment questions and the SQL labs. Technical
integration of these components was supported by the Knowledge Tree course portal
providing a single sign-on access to all three systems. Conceptual integration was
maintained by the user modeling server CUMULATE [10], which stored the
integrated model of student knowledge of SQL programming language. The student
models were built as overlays of SQL Ontology that has been developed as a
collaborative effort of University of Pittsburgh and University of Canterbury [11].

2.1 The Adaptive Knowledge Tree Portal

Knowledge Tree portal offers students a single sign-on and personalized access to all
kinds of learning resources available in the Exploratorium. The content and the
structure of the information available through a portal to students taking a specific
course is determined by a teacher of the course who could arrange the learning
content according to the needs of the course. Knowledge Tree is implemented using a
common folder-document paradigm. Each course is structured as a sequence of nested
folders (for example, lecture folders, if the teacher chooses to structure material by
lecture). Lecture folders contain individual resources relevant to this lecture such as
SQL-KnoT and SQL Tutor problems, WebEx examples, and other course materials,
which the teacher chooses to provide for this lecture. The Knowledge Tree interface is
shown in fig. 1. This figure represent the state of the portal after the completion of the
integration process presented in the section 4, when SQL Tutor problems became
available through the portal. Here, the left window presents a list of items in a lecture
folder. Windows on the right show an SQL-KnoT problem (top) and SQL Tutor
problem (bottom) from that lecture.

Fig. 1. An SQL KnoT problem (top right) and SQL Tutor problem (bottom right) accessed
through the Knowledge Tree portal (folder with navigation on the left).

Knowledge Tree uses adaptive navigation support approach to guide students to
the most appropriate educational activities: it provides an adaptive icon next to the
link to each learning resource or a folder. The type of the icon and the adaptation
approach depends on the type of the resource and the context. For example, in the
current version of the Exploratorium each link to SQL-KnoT problems is annotated
with a wholly/partially filled bullet that denotes user knowledge of the material

underlying the problem (fig. 1, left). Folder annotations denote the cumulative student
progress with resources in that folder.

2.2 SQL KnoT: Knowledge Testing for SQL

The SQL-KnoT (Knowledge Tester) is an original component of the Exploratorium. It
offers students an opportunity to test and practice their problem-solving skills. It
generates questions that require a student to write an SQL query for a sample database,
evaluates the correctness of student’s answer, and provides a student with feedback
(fig.1, top). SQL-KnoT uses a novel approach to question generation and answer
evaluation. Every time a student accesses an SQL-KnoT question, the actual question
text is generated by the corresponding template from the set of predefined databases.
When SQL-KnoT evaluates a student’s answer, it randomly generates several starting
states of the question database. After that, SQL-KnoT compares the result produced
by the student solution for each database state with the corresponding result produced
by the pre-stored correct query (model solution). To be evaluated as correct, the
student solution should always produce the same result as the model solution. For the
needs of our courses, we have developed about 50 templates capable of generating
over 400 actual questions.

2.3 SQL Ontology

SQL Ontology serves as a backbone of the Exploratorium. It was developed as a
collaborative effort between the PAWS Lab of the University of Pittsburgh, and the
ICT Group of the University of Canterbury [10]. It serves as a basis for the overlay
student model and as a vocabulary for indexing learning content. The ontology can be
accessed at http://www.sis.pitt.edu/~paws/ont/sql.owl. It is a light-weight OWL-Lite
ontology, with more then 200 classes connected via three types of relations: standard
rfs:subClassOf (hyponymy relation) and a transitive relation pair sql:isUsedIn –
sql:uses, which models the connection between two concepts, where one concept
utilizes another. Fig. 2 gives some examples of these relations. More details on the
ontology can be found in [11, 12]

Fig. 2. Extract from the SQL Ontology.

3. SQL-Tutor and Constrained-based User Modeling

SQL-Tutor is a constraint-based intelligent tutoring system [9] designed to help
students learn SQL. It is a part of a family of tools created and maintained by the

Intelligent Computer Tutoring Group (ICTG1) [13]. SQL-Tutor has been evaluated in
twelve studies since 1998 and has been shown to be effective in supporting students’
learning. SQL-Tutor contains about 300 problems relating to a number of databases;
the databases provide a context for each problem. The pedagogical module presents
students with problems appropriate to their knowledge level. Students have the
freedom to ignore the system’s suggestion and choose any other problem. The SQL-
Tutor interface is shown in fig. 1 (right) and contains the problem definition area, the
solution workspace, the feedback message pane, controls, and the problem context
area.

SQL-Tutor represents domain knowledge as constraints. Constraints are domain
principles that must be satisfied in any correct solution. Each constraint contains two
conditions: the relevance condition and the satisfaction condition. A constraint is
relevant if the features within the student’s solution match the same features described
in the relevance condition. The satisfaction condition describes what must be true in
order for the solution to be correct. If the student solution violates the satisfaction
condition of any relevant constraint, the solution is incorrect. Feedback messages
attached to each constraint allow the system to present detailed and specific feedback
on violated constraints. The constraint set in SQL-Tutor contains about 700
constraints, which check for syntactic and semantic correctness of the solution. Fig. 3
illustrates two constraints.

Fig. 3. Two example constraints

4. SQL-Tutor Integration

To integrate SQL-Tutor into the Exploratorium we have it enhanced with a new
subsystem called SQL-Tutor Resource Component (STRC). The four modules of
STRC are shown in Fig. 4 and include SQL-Tutor, the mapping module, the
authentication module, and the external communications module. Within the STRC,
the core engine and modules of SQL-Tutor are treated as “black boxes”. A simple
internal API allows for basic control requests (for example, requesting a particular

1 http://www.cosc.canterbury.ac.nz/tanja.mitrovic/ictg.html

problem from SQL-Tutor) while the SQL-Tutor solution evaluator reports student
progress.

The fundamental differences in the domain models of SQL-Tutor and SQL-KnoT
make reliable automatic alignment of these models rather impractical. A well-
established set of ontology mapping techniques cannot be applied to this task due to
the unique nature of SQL-Tutor’s constraints. A constraint is not directly related to a
single concept or a sub-tree of the ontology; instead it models the syntactic or
semantic relations between various concepts. The purpose of the mapping module is
to take any report from SQL-Tutor (i.e. a short or long-term student model based on
constraints) and convert it to a report based on a pre-agreed common ontology used
by a particular external server (CUMULATE).

Fig. 4. High-level view of the SQL-Tutor Resource Component (STRC)

Each constraint links to one or more concepts from the common SQL ontology.
The degree to which each concept is associated with the constraint is modeled by the
weight, such that a concept with higher weight has higher relevance in that constraint.
Weights are small (1), medium (2), or large (3). On each attempt, the mapping
module receives a report of the short-term student model consisting of two sets of
constraints: satisfied and violated. A student knowledge score is then calculated for
each concept using equation 1 below. The score for each concept ranges from -1 to 1.
A score of -1 means that the student violated all the instances of all constraints
relating to that particular concept and vice versa for a score of 1. The mapped student
model is then sent to the external communications module, for converting it into the
CUMULATE report format.

(1)

The authentication module contains the session generator and provides the
authentication into the STRC. Server-level authentication operates on the belief that
user authentication occurs at the external server. This means that anyone using STRC
via an authenticated external server is pre-authorized and does not require further
validation. This is different from the stand-alone SQL-Tutor version, which provides
authentication at the user-level. Before communications with the STRC, an external
server (e.g CUMULATE) identifies itself and requests a new session code from the
session generator. Using this code and a secret key, the external server begins
communications with the external communications module, which, after successful
authentication, processes its request.

5. Classroom Evaluation of the Integrated Database Exploratorium

We have performed a half a semester study of the developed platform in the context
of two introductory database courses at the University of Pittsburgh in the fall, 2008.
The native Exploratorium tools (including Knowledge Tree and SQL-KnoT) were
available to the student from the beginning of the semester. SQL-Tutor was
introduced in the middle of the semester, when students were already studying more
advance SQL topics.

Our main goal was do check whether the students actually need the integration of
SQL-Tutor into Exploratorium. Although the previous study showed that students
appreciated the integrated nature of Exploratorium tools [8], the original set of tools
provided them with very different learning activities (problem, examples and labs). At
the same time SQL-Tutor, while implementing advanced diagnostics of students’
answers and rich problem solving support, did not introduce to them any sufficiently
new learning activity comparing to existing and familiar SQL-KnoT.

The results of the study show, out of 42 students who worked with SQL-KnoT 18
tried SQL-Tutor problems. Several students after that switched to using SQL-Tutor,
but most of them continued to use both tools. The session analysis show that out of
103 sessions, where students accessed SQL-KnoT system, in 66 they also worked
with SQL-Tutor, which means they really used both systems simultaneously.

Besides objective usage parameters we also collected a short questionnaire
evaluating students’ subjective opinion about different aspects of the integrated
systems. 21 students agreed to fill the questionnaire at the end of the semester (9 for
graduate students and 12 for undergraduate students). We used the standard Likert
scale with five values (from “strongly agree” to “strongly disagree”). The results are
like the following. Fig. 5 demonstrates the result of this questionnaire.

• I1 / I2: Overall, I like the interface of SQL-KnoT/SQL-Tutor.
• U1 / U2: SQL-KnoT/SQL-Tutor is a useful learning tool.
• C1 / C2: SQL-KnoT/SQL-Tutor problems challenged me intellectually.
• E: SQL-KnoT is generating similar problems with different content and this feature is

useful.
• F: When you answered wrongly, the feedback provided by SQL-Tutor was helpful to

solve the questions correctly.
• L: Seeing various levels of feedbacks was important.

Fig. 5. Results of the subjective evaluation

As we can see from the plot, students valued both systems and appreciated the
opportunity to use them both. They also positively responded to the core features of
the systems such as question generation by SQL-KnoT and corrective feedback of
SQL-Tutor.

6. Summary and Future Work

This paper presents a rather unique project on integrating two Web-based adaptive
educational systems. The two systems were originally developed by separate research
teams and have been use in real-life educational settings by hundreds of students
before we decided to integrate them. The implemented architecture provides one of
the first working cases of real-life cross-system personalization in the context of e-
Learning. From the student interface point of view we tried to achieve the feeling that
the systems are the part of a single learning environment. The students were able to
login in both systems using the central learning portal and accessed systems’
resources in similar way from the corresponding course folders. From the integration
point of view the biggest challenge resulted form the very different principles of
domain representation and user modeling employed by the integrated systems. The
classroom evolution of the developed platform has shown that students use the
systems within single session, which support the need for integration and consistent
inter-system user modeling and adaptation. The described project only a first step
towards the true integration of AWBES. Our students could work with both SQL-
Tutor and SQL-KnoT can be taken into account by our adaptive portal to provide
adaptive navigation support for SQL-KnoT problems. However, SQL-Tutor so far
does not take into account the modeling information available in CUMULATE. More
careful study of the quality of the resulting user models is also required.

References

1. Brusilovsky, P., and Peylo, C. Adaptive and intelligent Web-based educational systems.
International Journal of Artificial Intelligence in Education 13(2-4), 159-172.

2. Murray, T., A Model for Distributed Curriculum on the World Wide Web. Journal of
Interactive Media in Education, 1998.

3. Rowley, K. The challenge of constructing a Mega-tutor over the Web. in Workshop
"Intelligent Educational Systems on the World Wide Web" at AI-ED'97, 8th World
Conference on Artificial Intelligence in Education. 1997. Kobe, Japan: ISIR.

4. Koedinger, K.R., D.D. Suthers, and K.D. Forbus, Component-based construction of a
science learning space, in 4th International Conference on Intelligent Tutoring Systems
(ITS'98), B.P. Goettl, et al., Editors. 1998, Springer Verlag: Berlin. p. 166-175.

5. Roschelle, J., et al., Scaleable Integration of Educational Software. Journal of Interactive
Media in Education, 1998. 98(6).

6. Trella, M., C. Carmona, and R. Conejo. MEDEA: an Open Service-Based Learning
Platform for Developing Intelligent Educational Systems for the Web. in Workshop on
Adaptive Systems for Web-based Education at 12th International Conference on Artificial
Intelligence in Education, AIED'2005. 2005. Amsterdam: IOS Press.

7. Brusilovsky, P. KnowledgeTree: A distributed architecture for adaptive e-learning. in 13th
International World Wide Web Conference, WWW 2004 (Alternate track papers and
posters). 2004. New York, NY: ACM Press.

8. Brusilovsky, P., et al., An Open Integrated Exploratorium for Database Courses, in 13th
Annual Conference on Innovation and Technology in Computer Science Education
(ITiCSE'2008). 2008, ACM Press: Madrid, Spain. p. 22-26.

9. Mitrovic, A. and S. Ohlsson, Evaluation of a Constraint-based Tutor for a Database
Language. Int. J. on Artificial Intelligence in Education, 1999. 10(3-4): p. 238-256.

10. Brusilovsky, P., Sosnovsky, S., and Shcherbinina, O. 2005. User Modeling in a Distributed
E-Learning Architecture. In L. Ardissono, P. Brna & M. A. (eds.), Proceedings of 10th
International Conference on User Modeling (UM'2001), Edinburgh, UK (pp. 387-391).

11. Sosnovsky, S., et al. Towards integration of adaptive educational systems: mapping domain
models to ontologies. in 6th International Workshop on Ontologies and Semantic Web for
E-Learning (SWEL'2008) in conjunction with ITS'2008. 2008. Montreal, Canada.

12. Sosnovsky, S., et al., Ontology-based integration of adaptive educational systems, in 16th
International Conference on Computers in Education (ICCE’2008). 2008: Taipei, Taiwan.
p. 11-18.

13. Mitrovic, A., B. Martin, and P. Suraweera, Intelligent tutors for all: Constraint-based
modeling methodology, systems and authoring. IEEE Intelligent Systems, special issue on
Intelligent Educational Systems, 2007. 22(4): p. 38-45.

Acknowledgements

This material is based upon work supported by the National Science Foundation
under Grant No. DUE-0633494.

