
 1

INFSCI 2950 - INDEPENDENT STUDY

Automatic Cognitive Tutor Generator for Python Code

Snippets

Keyang Zheng

kez20@pitt.edu

School of Computing and Information

mailto:kez20@pitt.edu

Automatic Cognitive Tutor Generator for Python Code Snippets 2

1.Overview

Inspired by Professor Peter Brusilovsky and Yun Huang, my topic for this

independent study is focused on developing an automatic generator to generate a

CTAT Example Trace Cognitive Tutor from a provided Python code snippets.

The system is currently available at:

http://tutor-converter.herokuapp.com/converter/

The overall idea of automatically generating the tutor is that building a CTAT

Example Trace Tutor requires user to manually record all the steps in the tutor.

This process is generally fine when only a small number of tutor is required to be

built. But when a large number of tutors is required, the process can be very tiring.

Because all the tutors only require the correct code processing path. If we can

obtain the correct step by step code processing record, generating the tutor is

possible. In this system, I used the debugger module from Python, to obtain the

step by step debugging information, which includes the line number and the value

of each variables. These information is enough for building the tutor automatically.

http://tutor-converter.herokuapp.com/converter/

Automatic Cognitive Tutor Generator for Python Code Snippets 3

2.Objectives:

- Automatically generate the Behavior Graph file for cognitive tutor from the

provided Python code

- Automatically generate the HTML Interface for the cognitive tutor

- Provide the generator as a standalone web app, for general use.

3.Used Techniques:

Python, Django, PostgreSQL, HTML, CSS, JavaScript, jQuery, Bootstrap.

4.System Design

In order to generate the tutor from provided Python code, the system takes the

following steps:

1. Obtain the step by step debugging trace, which represent the machine’s

knowledge of how the code is executed.

2. Create an cognitive model from the trace, which represent the human’s

knowledge of how the code is executed.

Automatic Cognitive Tutor Generator for Python Code Snippets 4

3. Create the Behavior Graph file from the cognitive model.

4. Combine the Behavior Graph File and the generated HTML Interface, and

create the tutor.

I - Obtaining the debugging trace

The idea of filling out the value of each variable line by line while executing the

code is very similar to setting breakpoint on every line and debug step by step. And

this is the reason the system is using the debug trace for the code rather than

analyse the code directly.

The ​PythonTutor​ project developed by ​Philip Guo​ also uses the similar approach,

and the backend he developed already contains a recorder for the debug trace.

However, the recorder is developed in a way which is closely integrated with

whole PythonTutor system. So I developed a warp method for the recorder to

integrate into my system, which takes the String of the code and return with a Dict

type trace to be used in the next step.

II - Generate Cognitive Model

http://pythontutor.com/visualize.html
http://pgbovine.net/

Automatic Cognitive Tutor Generator for Python Code Snippets 5

After obtaining the debug trace, the next step is to interpret the trace. The debug

trace is the computer version of the cognitive model on how the code is executed,

which is different from how a human in a learning process would understand about

how the code is executed.

The main difference lies in the line number and the corresponding values of every

variable. In human’s cognitive model, we stop the execution on every line after

that line’s code is executed, so the values of every variables is updated with the

result of this line’s execution. But the breakpoint in debug stop the code execution

before the line where the breakpoint exist, so the values of every variables is the

result of the last line’s execution. In order to get the result of this line’s execution,

we have to stop at the next line and get the value of those variables.

In my system, when interpret the debug trace, I added additional context

information to record which line is executed a step earlier than the current line. So

the variables’ value is the result of that earlier line.

The function that fulfill this process is

get_cognitive_model(variables: list, db_trace: dict):

<4.1 trace_analysis.py>

def​ get_cognitive_model​(​variables​:​ list​,​ db_trace​:​ dict​):

 trace ​=​ db_trace​[​'trace']

Automatic Cognitive Tutor Generator for Python Code Snippets 6

 cognitive_model ​=​ ​[]

 ​# initialization

 snapshot ​=​ ​{​"line"​:​ ​1​,​ ​"previous_line"​:​ ​1}

 ​for​ variables ​in​ variables:

 snapshot​[​variables​]​ ​=​ 0

 cognitive_model​.​append​({​"changed"​:​ ​"line"​,​ ​"value"​:​ snapshot​[​'line'​],​ ​"line"​:

snapshot​[​'line'​]})

 ​# running the code and update the snapshot

 ​for​ step ​in​ trace:

 has_error​,​ msg ​=​ check_trace_result​(​step)

 ​if​ ​not​ has_error:

 g_vars ​=​ step​[​'globals']

 ​for​ var_name ​in​ g_vars:

 ​if​ g_vars​[​var_name​]​ ​!=​ snapshot​[​var_name​]:

 cognitive_model​.​append​({​"changed"​:​ var_name​,​ ​"value"​:​ g_vars​[​var_name​],

"line"​:​ snapshot​[​'line'​]})

 snapshot ​=​ update_snapshot​(​var_name​,​ g_vars​[​var_name​],​ snapshot)

 line ​=​ step​[​'line']

 ​if​ line ​!=​ snapshot​[​'line'​]:

 cognitive_model​.​append​({​"changed"​:​ ​"line"​,​ ​"value"​:​ line​,​ ​"line"​:​ line​})

 snapshot ​=​ update_snapshot​(​'previous_line'​,​ snapshot​[​'line'​],​ snapshot)

 snapshot ​=​ update_snapshot​(​'line'​,​ line​,​ snapshot)

 ​if​ step​[​'stdout'​]​ ​!=​ ​'':

Automatic Cognitive Tutor Generator for Python Code Snippets 7

 cognitive_model​.​append​({​"changed"​:​ ​'stdout'​,​ ​"value"​:​ step​[​'stdout'​],

"line"​:​ line​})

 variables​.​append​(​'stdout')

 ​else:

 ​print​(​msg)

 ​break

 ​return​ cognitive_model​,​ variables

III - Generate Behavior Graph File (*.brd)

The most important part of the system to generate the Behavior Graph File, which

store the information of every steps that is required to do in order to successfully

execute the code.

The brd file is basically an XML file with different file name. Because we have

already obtain the cognitive model of the provided code, following every steps of

the cognitive model is enough to create the brd file. The brd file mainly consists of

2 major parts: nodes and edges. Edges corresponding to each step in the cognitive

model, whereas nodes corresponding to the state between every step, since every

step is basically an action the code snippet took from human’s perspective.

Automatic Cognitive Tutor Generator for Python Code Snippets 8

I used a Python package called Yattag to create the XML style brd file. The

package uses the Python context manager to create the XML structure in a readable

fashion. The following

<4.2 behavior_graph.py>

def​ edge​(​prop​:​ dict​,​ var_pos​:​ dict​):
 doc​,​ tag​,​ text​,​ line ​=​ ​Doc​().​ttl​()

 ​with​ tag​(​'edge'​):
 ​with​ tag​(​'actionLabel'​,​ preferPathMark​=​"true"​,​ minTraversals​=​"1"​,
maxTraversals​=​"1"​):
 ​with​ tag​(​'studentHintRequest'​):
 ​pass

 ​with​ tag​(​'stepSuccessfulCompletion'​):
 ​pass

 ​with​ tag​(​'stepStudentError'​):
 ​pass

 line​(​'uniqueID'​,​ str​(​prop​[​'id'​]))

 doc​.​asis​(​message_section​(​get_edge_action_msg​(​prop​[​'step_value'​],​ prop​[​'target'​])
if​ prop​[​'target'​]​ ​!=​ ​'done'​ ​else​ get_edge_ending_action_msg​()))

 line​(​'buggyMessage'​,​ ​'No, this is not correct.')

 ​with​ tag​(​'successMessage'​):
 ​pass

 ​if​ prop​[​'target'​]​ ​!=​ ​'done':
 line​(​'hintMessage'​,​ ​"Please enter '"​ ​+​ str​(​prop​[​'step_value'​])​ ​+​ ​"' in the
highlighted field.")
 ​else:
 line​(​'hintMessage'​,​ ​"Please click on the highlighted button.")

 ​with​ tag​(​'callbackFn'​):
 ​pass

 line​(​"actionType"​,​ ​"Correct Action")
 line​(​"oldActionType"​,​ ​"Correct Action")
 line​(​"checkedStatus"​,​ ​"Never Checked")

 ​with​ tag​(​'matchers'​,​ ​Concatenation​=​"true"​):
 ​with​ tag​(​'Selection'​):
 ​with​ tag​(​'matcher'​):
 line​(​'matcherType'​,​ ​'ExactMatcher')
 line​(​'matcherParameter'​,​ prop​[​'target'​],​ name​=​"single")

 ​with​ tag​(​'Action'​):
 ​with​ tag​(​'matcher'​):

Automatic Cognitive Tutor Generator for Python Code Snippets 9

 line​(​'matcherType'​,​ ​'ExactMatcher')
 line​(​'matcherParameter'​,​ prop​[​'action'​],​ name​=​'single')

 ​with​ tag​(​'Input'​):
 ​with​ tag​(​'matcher'​):
 line​(​'matcherType'​,​ ​'ExactMatcher')
 line​(​'matcherParameter'​,​ str​(​prop​[​'step_value'​]),​ name​=​'single')

 line​(​'Actor'​,​ ​'Student'​,​ linkTriggered​=​"false")

 line​(​"preCheckedStatus"​,​ ​"No-Applicable")

 ​with​ tag​(​'rule'​):
 line​(​'text'​,​ ​'unnamed')
 line​(​'indicator'​,​ ​'-1')

 line​(​'sourceID'​,​ str​(​prop​[​'id'​]))
 line​(​'destID'​,​ str​(​prop​[​'id'​]​ ​+​ ​1​))
 line​(​'traversalCount'​,​ ​'0')

 ​return​ doc​.​getvalue​()

After the Behavior Graph being created, it is not stored in a file on disk, but stored

in the database as JSON-coded content. When the server receive a request for the

specific behavior graph file, the behavior graph will be fetched from the database,

decoded and generated for download as a BRD file.

IV - Combine the Behavior Graph File and the generated HTML Interface,

and create the tutor

This is the step processed by the Django server. The system provides a quick way

to preview the generated Behavior Graph file in action with generated interface, as

well as download the generated Behavior Graph File as shown in Figure 4.1.

Automatic Cognitive Tutor Generator for Python Code Snippets 10

The tutor interface consists of 4 different parts: the code snippet, instruction, user

input table and the hints. Asides from the instruction, other three parts are all

generated dynamically. The code snippet is the Python code provided by the user

with highlighted syntax and line number. The number of rows and columns the

user input table has is determined by the number of variables and the number of

steps in order to correctly execute the code. The hints field shows the hints for user

if they ever face difficulties when trying to finish the tutor.

Figure 4.1 Interface for Preview the Tutor

The interface utilize the JavaScript phraser provided by CMU CTAT group, which

requires the a BRD file as input. Since all the Behavior Graph Files are not stored

on the server disks but in the database, the web page will issue another HTTP GET

Automatic Cognitive Tutor Generator for Python Code Snippets 11

request to the server and the server will dynamically generate the file and return it

as response. The same procedure will repeat when user try to download the BRD

file.

Following code snippets is for the dynamically creating the BRD file.

<4.3 view.py>

def​ brd_download​(​request​,​ behavior_model_id​):

 behavior_model ​=​ get_object_or_404​(​BehaviorGraph​,​ pk​=​behavior_model_id)

 json_dec ​=​ json​.​decoder​.​JSONDecoder​()

 response ​=​ ​HttpResponse​(​json_dec​.​decode​(​behavior_model​.​brd​),
content_type​=​'application/brd')
 response​[​'Content-Disposition'​]​ ​=​ ​'attachment; filename='​ ​+​ behavior_model​.​problem_name
+​ ​'_brd.brd'
 ​return​ response

5.Future Improvement

Support for complex data type and code flow

The system currently does not support more complex data types which requires the

debugger to access the heap data. This limited the options for what kind of code

snippets the system can accept. But for basic ideas like loop, if else blocks, the

system can handle candidly. Recursions, class definitions, decorators and other

Automatic Cognitive Tutor Generator for Python Code Snippets 12

advanced topic is not supported in this version of the system, as they also needs

access to the heap data.

Variable selection for the tutor

In the meantime, when code snippets become more and more complex, the number

of variables involved in the code snippets also become larger. System should be

able to let the user choose which variables to focus on rather than displaying all of

them.

Also with added complexity of code execution order, local variables are becoming

more important in understanding the execution order of the code. With more clear

picture, I would be able to phrase out the local variables, and track them as the

code executed.

Improvement of the Tutor Interface

Adding more complex data type also poist interface design challenges as how to

display these data. I have yet to find a clear design to display the all the required

information on screen without compromise the simple and easily user interaction

with the system and tutor. For instance, how to represent a list object or a dict

object in a way that is clear for user to see the total value of the object, as well as

for user to enter the changed value of an individual cell or <key, value> pair.

Automatic Cognitive Tutor Generator for Python Code Snippets 13

6.Limitation and Constraints:

Due to the nature of the tutor, the Python snippets, which the specific tutor is built

upon, is required to contain no user inputs. As the tutor is designed to test learner’s

understanding of basic programing knowledges. Also, technical constraints require

the code snippets to not include function definition or class definitions, as well as

non-primitive data types.

7.Codes:

https://github.com/albuszheng/autoTutorGen

