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ABSTRACT 
With the fast grow of online educational content, the abundance of quality material opens new opportunities to learners. For practically any 
domain, a learner can easily find tens, hundreds or even thousand of web pages, tutorials and electronic textbooks in the Internet. Modern 
educational systems can grasp this opportunity offering alternative content to their users by automatic linking similar content parts. This is 
known as intelligent linking and has been widely explored in the hypertext field. However, well known techniques for intelligent linking 
reach only relatively medium and low results for fine-grained content matching when applied to hierarchical organized content such as 
textbooks. In this work we re-visit the problem of intelligent linking of textbooks using modern approaches of probabilistic topic modeling. 
Working with collections of textbooks in two domains (Algebra and Information Retrieval), we explored options to apply probabilistic 
topic models to implement fine-grained content matching and demonstrated that such techniques performs much better than the previously 
used term-based approach. 
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1. INTRODUCTION 
The vast amount of learning content available in the Web opens several opportunities for adaptive educational 
systems supporting the learner to find the "right content". For practically any domain, a learner can easily find 
tens, hundreds or even thousand of web pages, tutorials and electronic textbooks in the Internet. The learners can 
benefit from this abundance of content: those who are not satisfied with the primary content source can switch to 
alternative resources and find better or more suitable  content. However, open-corpus resources are 
heterogeneous, they may organize the content in very different ways, may cover different amounts of the content 
and with different levels of details, may use different terms for the same concepts (synonym), and the same terms 
for different concepts (polysemy). All of these issues make a challenge to educational systems wanting to grasp 
this content abundance to offer dynamic linking between sections of different content resources that presents 
similar topics and concepts.  Picture the following scenario: imagine a learner reading a section about "Linear 
Equations in Two Variables" in an textbook about algebra. The learner has problems to understand part of the 
content and requested her e-learning system to suggest an alternative presentation from several online texbooks on 
the same subject known to the system. In response, the system returned a ranked list of links to relevant parts of 
the other textbooks: a chapter titled "Linear equations (part II)" in one book, a section titled "Solving linear 
systems of equations" in another book, a subsection in the same book titled "Graphical solving of linear equations 
in two variables", and a chapter titled "Solving equations" in a third book. Which one is exactly about the topic 
"linear equations in two variables"? Which one does a better covering of the content of the section the student 
read? 

In the field of hypertext, intelligent and dynamic linking of content (pages) that have no static link between 
them has been researched extensively and architectures supporting these tasks were suggested and implemented. 
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The task is in the core of the conception of the Internet as an interlinked collections of content resources. 
However, well known techniques for intelligent linking reach only relatively medium and low results for fine-
grained content matching when applied to hierarchical organized content such as textbooks. We believe that the 
quality problem of the intelligent linking approach can be addressed by switching from traditional term-based 
information retrieval approaches that stand behind the majority of known intelligent linking projects a more 
advanced probabilistic topic modeling technology that has become available over the last few years. 

In this paper, we report our work in re-investigate the problem of fine-grained intelligent linking of online 
textbooks applying two versions of one of the most popular probabilistic topic modeling approach known as 
Latent Dirichlet Allocation (LDA). LDA [4] is a statistical model that can automatically discover topics from a 
collection of documents. A variant, Hierarchical LDA (HLDA) [5], is a model that discovers a hierarchy of topics 
in which lower level topics contains words which are more specific in the domain. One important advantage of 
such models is that they can deal with synonym and polysemy problems [4]. Over the last few years, these 
techniques has been applied successfully for discovering semantic structures in large, heterogeneous and 
unstructured or lightly-structured collections like scientific journal papers or collections of news posts. Our 
challenge was to explore whether these approaches can be applied successfully within domain-specific collections 
of hierarchical structured content for the task of document matching. 

A study presented in this paper used a collection of textbooks in two domains, algebra and information 
retrieval, to explore whether intelligent linking based on topic models can achieve a better quality of section-level 
textbook linking than previously used term-based approaches. To maximize the quality of the new technology we 
also explored some important parameters associated with the application of topic-based approach in hierarchical 
textbook context and report the performance results. 

2. RELATED WORK 
2.1 Intelligent Linking 

Starting from the early work of Mayes and Kibby [16; 22], traditional information retrieval techniques based 
on keyword-level similarity (see next section)  have been applied for intelligent linking in a number of systems 
and architectures [12]. Unfortunately, the quality of such techniques for intelligent linking is less than perfect, 
specially when the task is to choose the most similar content alternatives. Keyword-based similarity often links 
pages that are not really similar. A second-generation research on intelligent linking explores how to improve the 
content matching. Some researchers focused on keyword-level techniques for generating typed links [3; 10] while 
others focused on improving the precision of keyword-level linking by incorporating “semantic-oriented” 
techniques such as latent semantic indexing [20], lexical chaining [14], and ontology-based linking [9]. In parallel 
and aiming to incorporating the "human in the loop", some researchers explored semi-automatic intelligent 
linking interfaces, such as map-based navigation with self-organized maps [8] and quotation-based navigation 
[17]. In this context, our work seeks to expand the “semantic” direction of intelligent linking research by 
exploring a more recent and more powerful LDA-based probabilistic topic modeling.  

2.2 IR techniques for document matching 
Text document matching has been widely explored by Information Retrieval (IR.) Different techniques such 

as the boolean model, the vector space model or the probabilistic language models has been used and combined to 
represent the content of the documents and match them to queries or other documents (see [21] or [2] for a 
comprehensive description on the field). One of the most used representations is the vector space model (VSM). 
In the VSM each document is represented with a vector over the space of the whole vocabulary of the collection, 
using measures like the term frequency inverse document frequency (TFIDF). In the VSM, the similarity between 
two document is often computed using Cosine Similarity, a measure of the angle between the vectors 
representations. Apache Lucene, a well known and used information retrieval software, uses a modified VSM - 
TFIDF model as described in [1]. 

More recently, a considerable amount of research has focused in improving retrieval tasks by indexing 
documents using dimentionality reduction techniques. Latent Semantic Indexing, or LSI [11] uses singular value 
decomposition (SVD) for extracting a set of features representing relations between terms in the collection, and 
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indexes the documents using these features. Probabilistic LSI (pLSI) is an improvement of LSI using better 
statistical foundations [15]. In pLSI each document is represented as a mixture of semantic features (also called 
aspects or topics). In [4], Blei argue that one of the limitation of pLSI is the lack of a well defined generative 
semantics disallowing the model to index documents outside the training collection, and to overcome this 
proposed Latent Direchlet Allocation (LDA), which is described in details in the next section.  

In probabilistic approaches, other similarity measures than the cosine similarity have been proposed [19]. The 
Kullback Leibler Divergence (KL divergence) [18] is a common measure of difference between two probability 
distributions and can be used for similarity by a simple inverse or reciprocal transformation. For probabilistic 
topic models, such as LDA, Steyvers and Griffiths [27] mentioned several approches for compute similarity 
between topic representations including cosine and symmetric KL-Divergence. 

2.3 LDA 
LDA [4; and other good explanations in 27, 13, 7] is a probabilistic topic model built upon the assumption 

that every document is generate by mixture of several topics. In LDA, every document is represented as a 
distribution of probabilities over a set of topics, and every topic is a distribution of probabilities over all the terms 
in the vocabulary. In the model building process, the co-occurrence of words in the documents is considered in a 
way to generate topics tending to have high probability on groups of words that often occur together. This simple 
approach can deal with synonym and polysemy: even when documents differs in the use of some terms for 
naming particular concepts, all of them will tend to belong to the same topic because they co-occur with other 
words that surround the meaning. For a detailed explanation of LDA and the statistical foundations supporting it, 
please refer to Blei's paper [4] or [27, 13].  

In the last years, LDA has gain an important attention in the text analyisis and machine learning fields. Many 
different variation of the model have been proposed to address different scenarios. Labeled LDA [24] 
incorporates external knowledge in the form of tags to drive the generation of the topics. Author-topic model [25] 
blends the authorship information to generate topics for a collection of scientific papers. Hierarchical LDA -or 
HLDA- [5, 6] builds a hierarchy of topics where a parent topics contains more general terms. In HLDA every 
document is represented as a distribution over the topics in one path in the hierarchical tree of topics created by 
the model, and each topic is a distribution over the join vocabulary among all topics in the same level. An extense 
description of structured topic models including HLDA is made in [28].  

Altought LDA based models has been applied to a numerous of different collections of documents for 
discovering structured topics, there is no known attempt of using these techniques for modeling hierarchical 
structured collections -such as textbooks- for the task of document linking. 

3. RESEARCH QUESTIONS 
The main goal of this work is to explore the use of probabilistic topic models for getting high accuracy on 

matching textbook parts (chapter, sections and subsections). Two topic models are used: LDA and HLDA. The 
first research question is: 

Q1: Will probabilistic topic models perform a more accurate document linking than common term-based 
aproach when applied in collection of textbooks?  

Key aspects to consider are the characteristics of textbooks. Textbooks are hierarchically organized and the 
content of each chapter, section or subsection is the aggregation of  the content of it's children. The assignment of 
topic distribution among parts of the textbooks in different levels of the hierarchy should consider these 
characteristics for a correct representation of the document content. To this regard, we state a second research 
question: 

Q2: What would be the best approach to incorporate the hierarchical structure of the textbooks in the topic 
model? 

We need a topic model that correct represent each document (each textbook part) as the aggregation of the 
content of its child parts. One option is to build the topic model from all textbook parts with aggregated content. 
However, this approach seems to "confuse" LDA and showed to perform very poorly in our preliminary tests for 
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both LDA and HLDA. Other, more reasonable approaches, consider to build the model using only documents that 
have text (usually leaf nodes) and further options for indexing the intermediate nodes. We consider two options:  

a) Aggregate topic distributions along the hierarchical structure by weighting children topic's distributions by 
their sizes. For simplicity we further call this option topic aggregation (TA).  

b) Re-indexing the aggregated content of the intermediate documents using the inference mechanism provided 
by the topic model. For simplicity we call this document re-indexing (RI).  

Additionally, since the model should reflect the domain regardless of the differences on the terminology that 
different authors may use, we consider to build the model using several books. We expect that a model built using 
multiples textbooks will reflect a better understanding of the domain and performs a better document linking than 
a model build using a single textbook. For simplicity we further call these options single book (SB) and multiple 
book (MB), respectively. We state a third research question: 

Q3: Will the model built using multiple textbooks (MB) performs a better document linking compared with a 
model built using a single textbook (SB)? 

4. EXPERIMENTS DESIGN 
To address the research questions we conducted several experiments running LDA and HLDA in different 

conditions within two collection of textbooks: Algebra and Information Retrieval. The conditions are evaluated by 
the effectivity of the resulting topic model in the task of matching textbook parts (or documents) within two 
textbooks. We use both cosine similarity and a reciprocal KL-divergence on the document-topic distributions 
provided by the model to perform the matching. The effectivity is measured with average NDCG(1), NDCG(3) 
and NDCG(10) and using a ground truth made by experts that consists of an ideal document mapping between the 
two books. 

4.1 Textbooks 
Four and five textbooks were downloaded and parsed for algebra and information retrieval, respectively. All 

text was converted to lowercase and stopwords were removed. Additional frequent words in the domain were also 
remove (for example: "exercises", "solutions" in algebra.)  All textbooks in the algebra domain had free access 
through the Web at the moment we downloaded them. For Information Retrieval books, four of the five books 
were given with the consent of the authors to our lab for academic purposes. One book was downloaded from the 
Web. For further references, the textbooks are labeled as BOOK 1, BOOK2, etc. BOOK 1 is used for building 
topic models in the Single Book condition (SB). BOOK 3, 4 and 5 are used for building topic models in the 
Multiple Book condition (MB). BOOK 2 is used for evaluation.  

4.1.1 Elementary Algebra textbooks 
 BOOK 1: Elementary Algebra, by Wade Ellis, Denny Burzynski. HTML version accessed from 

http://cnx.org/content/col10614/latest/ 
 BOOK 2: Elementary Algebra, v1, by John Redden. HTML version accessed from   

http://catalog.flatworldknowledge.com/bookhub/reader/128?e=fwk-redden--ch01_s01 
 BOOK 3: Understanding Algebra, by James W. Brennan. HTML version accessed from 

http://www.jamesbrennan.org/algebra/ 
 BOOK 4: Fundamentals of Mathematics, edited by Denny Burzynski and Wade Ellis. HTML version 

accessed from http://cnx.org/content/col10615/1.4/ 

4.1.2 Information Retrieval books  
 BOOK 1: Introduction to Information Retrieval, by C. D. Manning, P. Raghavan and H. Schütze, Cambridge 

University Press. 2008. HTML accessed from http://nlp.stanford.edu/IR-book 
 BOOK 2: Modern Informatio Retrieval, by Ricardo Baeza-Yates and Berthier Ribeiro-Neto.  
 BOOK 3: Finding Out About, by Richard K. Belew. Text accessed from http://cseweb.ucsd.edu/~rik/foa/l2h/ 
 BOOK 4: Information Storage and Retrieval Systems, by Gerald Kowalski.  
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 BOOK 5: Information Retrieval, by C.J. van Rijsbergen.  

4.2 Ground Truth 
The ground truth is a manual mapping of 2 textbooks (BOOK1 and BOOK 2) made by experts in both 

domains. 10 experts contributed: 1 professor and 6 PhD student from the Information Science School at the 
Univrsity of Pittsburgh, 3 researchers from CelTech research lab at DFKI (Universitaat der Saarland.) In the 
Algebra domain 5 chapters of BOOK 1 were mapped to BOOK 2. In the Information Retrieval domain, 4 chapters 
of BOOK 1 were mapped to BOOK 2. We ensured to have 2 expert mapping each chapter. We developed a web 
interface for facilitate the mapping task. Directions were given in order to have an accurate content matching: i) 
every chapter, section and subsection in the BOOK 1 can be mapped to 0 or more parts in the BOOK 2; ii) match 
as accurately as possible, i.e try to find the parts that better fit the content: each match could relate book parts on 
different levels, for example, a chapter matching a section; iii) consider that the content of a textbook part is the 
aggregation of the content of its sub-parts, e.g., the content of a section is the sum of all the content of its sub-
sections. 

Additionally, a level or relevance and confidence, both ranging from 1 to 3 (low, medium, high) were asked 
for each match.   

Finally, the ground truth was the compitation of all experts mappings blended in a single list. For each 
mapped part of the BOOK 1, all matches were ranked with a score computed using relevance and confidence. 
High scores were placed to match when both experts agreed. 

4.3 Conditions and Hypotheses 
Q1 stresses the idea of comparing LDA and HLDA with a baseline. The baseline is the effectivity of 

document matching using the term-based approach implemented in Apache Lucene (http://lucene.apache.org) and 
is further described in the next section. Q2 stresses the idea of comparing different approaches to incorporate the 
hierarchy in the topic model. For simplicity, we further refer to this factor as the aggregation strategy and have 
two levels: topic aggregation (TA) and re-indexing (RI), as described in section 3. Q3 stresses the comparison 
between a model built using a single book with a model built using multiple books from the collection. For 
simplicity, we further call this factor books and it have two levels: single book (SB) and multiple books (MB). 
Additionally, similar documents are matched using cosine similarity and reciprocal symmetric KL-Divergence. 
For simplicity we further call this factor similarity with two levels: Cosine and KL-Divergence (note that we 
simply refer as KL-Divergence to a reciprocal symmetric KL-Divergence). The 8 model conditions are shown in 
Table 1. Each of them is applied to both LDA and HLDA in the 2 domains. 

Table 1: The eight conditions. 
  Aggregation 
  Topic Aggregation (TA) Re-Indexing (RI) 
  KL-Divergence Cosine KL-Divergence Cosine 

Single Book 
(SB) TA-SB-KLDiv TA-SB-Cos RI-SB-KLDiv RI-SB-Cos 

Books 
Multiple 
Books (MB) TA-MB-KLDiv TA-MB-

Cos RI-MB-KLDiv RI-MB-Cos 

 

For addressing the research question 1 (Q1), the eight conditions are compared to the baseline using 
NDCG(1), NDCG(3) and NDCG(10). We define th following hypotheses: 

H1.1 A model built using LDA performs a better document matching than the baseline. 

H1.2 A model built using HLDA performs a better document matching than the baseline. 

Since the baseline accuracy score is a fixed value, we use one-sample t-test to test the hypotheses H1.1 and 
H1.2. 

For addressing the research question Q2 and Q3, we state the following hypotheses: 
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H2 A probabilistic topic model that aggregates the topic probabilities among the book hierarchies (TA) will 
perform a better document matching than a model using re-indexing of the aggregated content (RI). 

H3 A probabilistic topic model built using several textbooks (MB) will perform a better document matching 
than a model built using a single textbook (SB). 

For testing H2 and H3, the different condition groups are compared between them using a three-way 
ANOVA. Interactions, multigroups comparison and marginal means are reported. 

4.4 Measuring the Effectivity for Document linking  
We evaluate the effectivity of a model condition in finding similar documents using average NDCG at 1, 3 

and 10 as follows: i) for each part in the BOOK 1, all the parts in the BOOK 2 are ranked computing cosine 
similarity and reciprocal symmetric KL-divergence on the respective topic distributions; ii) each ranked list is 
evaluated to the respective rank list in the ground truth (ideal rank with scores) using NDCG at 1, 3 and 10; iii) an 
average NDCG at 1, 3 and 10 is computed among all the parts in BOOK 1. Since both LDA and HLDA use 
random seeds in the sampling process for analyzing the collections, every run produce different topic sets. 
Considering this, each model condition is run 30 times (N=30), and the average and standard deviation are 
reported in the statistical tests (this is not the number of iterations of the sampling process for buildng the topic 
model. Each model iterates 2000 or 4000 times as explained in the next section). NDCG(1) represents the ability 
of the finding the top similar document in the first position. NDCG(3) and NDCG(10) relax the score letting the 
ranking to have relevant documents up to positions 3 and 10 respetively. However, NDCG penalizes the score 
when relevant documents are fund in lower positions respecting the position they occupe in the ideal rank.  

4.4.1 Baseline 
The baseline is the effectivity (average NDCG at 1, 3 and 10) of the ranked lists resulting of querying an 

index built using Apache Lucene (http://lucene.apache.org). For each part in the BOOK 1, a query is performed to 
the index. The index is built using BOOK 2. Lucene performs similarity between query and documents using a 
variant of the TFIDF model described in [1]. 

4.5 LDA and HLDA set up 
We use MALLET Toolkit implementation of LDA and HLDA [23]. In MALLET, LDA set up depends on the 

number of topics, the number of iterations for the sampling process, the smoothing over topic distribution 
hyperparameter α, and the smoothing over topic-word distribution hyperparameter β (a good explanation of the 
LDA hyperparameters can be found in [27]). We set the number of iterations to 2000, taking into account the size 
of the documents and the collections. For selecting the number of topics, we followed a simple approach. Since 
we expect the topics to represent semantic units of the textbooks' content, we estimated that the number of topics 
should be a number between the number of sections and the number of subsections in the average book 
(sometimes sections covers several topics, and sometimes subsections cover examples, exercises or different 
views of the same topic). In the algebra domain BOOK 1 have 74 sections and 228 subsections, thus we choose 
150 topics. This number also gave us the best results in the preliminary tests. In Information retrieval domain the 
BOOK 1 has 120 sections and 178 terminal nodes (some sections does not open in subsections and are counted as 
subsections). Here we also chose 150 topics. About hyperparameters, we set up initial values of α = 0.01 and β = 
0.01, and then used the fixed-point optimization for hyperparameters [28] implemented in MALLET. 

In HLDA, the number of topics is a result of the algorithm. Instead, the number of levels (L) of the topic 
hierarchy should be provided in MALLET implementation. We choose four levels (L=4) because it copy the 
domain structure (domain, chapter, section, subsection). Also, in HLDA three hyperparameters controls the shape 
of the tree and the topic generation. The hyperparameter γ controls the tendency of creating new branches (new 
topics) or following existig paths when the sampling method assigns words to topics. Small values of γ (γ << 1) 
tend to produce trees with fewer and umbalanced branches. The hyperparameter α is a smoothing over the level 
distribution in a document. Higher values of α smooths the differences of the probability of the topics in the path 
of each document (remember that in HLDA each document is represented as a distribution over the topics in one 
path in the topic hierarchy). The hyperparameter η smooths the topic-word distributions. Small values of η (η << 
1) tend to concentrate topic probabilities in small number of words and thus produce more specific topics. The 
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number of topics and the shape of the tree are highly sensitive to the combination of γ and η [6]. While small γ 
can constraint the tendency of creating new branches, small values of η (more concentrate topics) will tend to 
generate a sparser tree. 

In our preliminary tests we found that sparse trees produce better results in the document matching task (more 
specific topics are more discriminative), and that this sparsity is much more dependent on lower values of η than 
higher values of γ. This is consistent with [26] who states that HLDA is highly sensitive to η. Also, the number of 
topics in the tree depends highly in the number of documents in the collection used during the sampling process. 
Since we test a single book (SB) and a multiple book (MB) while generating the models and we want to generate 
similar amount of topics in each condition, we choose either η=0.01 and η=0.001 for single book and multiple 
books conditions, respectively. In preliminary tests we found that these values give similar number of topics, 
respectively. About γ, we found out that small values (γ<1) tend to produce highly unbalanced trees. After several 
preliminary tests, we then chose γ=3.5. Good results were less dependant of α and in general, the model performs 
better with relatively high values. We chose α=5. 

5. RESULTS 

5.1 Do LDA and HLDA perform better than baseline? 
For testing H1.1 and H1.2, a one-sample t-test was performed to compare the four conditions (SB-TA, MB-TA, 
SB-RI, MB-RI) in each model (LDA, HLDA) with the scores of the baseline in 3 levels of NDCG (1, 3, 10) using 
both Cosine similarity and symmetric KL-Divergence. 

5.1.1 Algebra domain 
In Algebra, LDA conditions using KL-Divergence gave higher scores than Cosine in all NDCG levels, thus 

KL-Divergence scores are reported in table 2. Figures 1 and Figure 2 show NDCG(1) and NDCG(10) scores for 
all conditions compared with the baseline (dotted line). Further analysis comparing the different conditions, 
including KL-Divergence and Cosine as a factor are performed in the next section.  

Examining Table 2, all results were significantly higher than the baseline except for LDA-MB-RI in 
NDCG(3) (M = .572, SD = .032, p = .132), LDA-MB-TA in NDCG(10) (M = .663, SD = .017, p = .165) and 
LDA-MB-RI in NDCG(10) which was significantly lower than the respective baseline (M = .647, SD = .026, p = 
.022). Among the significantly higher scores, the higher effect sizes were always presented by LDA-SB-TA 
(NDCG(1): M = .546, SD = .025, p < .001, Cohen's d = 7.232; NDCG(3): M = .647, SD = .018, p < .001, Cohen's 
d = 3.683; NDCG(10): M = .691, SD = .015, p < .001, Cohen's d = 2.187). 

Since for all NDCG levels there was at least one condition that performs significantly better than the baseline, 
these results support H1.1 in the Algebra domain. 

All conditions using HLDA were significantly lower than the baseline. The extreme scores were HLDA-SB-
TA (M = .242, SD = .045, p < .001, Cohen's d = 2.76) and HLDA-MB-RI (M = .124, SD = .03, p < .001, Cohen's 
d = 13.6). H1.2 was not supported in Algebra domain.  

Table 2. The four conditions of LDA using KL-Divergence in the Algebra domain. 
 NDCG(1)  NDCG(3)   NDCG(10)   
Baseline 0.3662  0.5807 0.6582 
  Mean Std. Dev. Sig. (p) Mean Std. Dev. Sig. (p) Mean Std. Dev. Sig. (p) 
LDA-SB-TA 0.547 0.025 <.001 0.647 0.018 <.001 0.691 0.015 <.001 
LDA-MB-TA 0.532 0.036 <.001 0.62 0.021 <.001 0.663 0.017 0.165 
LDA-SB-RI 0.456 0.027 <.001 0.601 0.027 <.001 0.675 0.019 <.001 
LDA-MB-RI 0.414 0.04 <.001 0.572 0.032 0.132 0.647 0.026 0.022 
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Figure 1: LDA and HLDA conditions compared with the baseline for NDCG(1) in Algebra domain. Baseline is 

indicated with a dotted line. 

 
Figure 2: LDA and HLDA conditions compared with the baseline for NDCG(10) in Algebra domain. Baseline is 

indicated with a dotted line. 

5.1.2 Information Retrieval 
Using the Information Retrieval collection, all LDA conditions performs better than the baseline using both 

cosine and KL-Divergence. KL-Divergence values are reported in Table 3. Figure 3 and Figure 4 show NDCG(1) 
and NDCG(10) scores for all conditions compared with the baseline (dotted line). These results support H1.1. 

There were only two HLDA conditions that present significantly higher scores than the baseline, both of them 
for NDCG(1): HLDA-SB-TA (M = .145, SD = .060, p < .001,Cohen's d = 1.478) and HLDA-MB-TA (M = .153, 
SD = .057, p < .001, Cohen's d = 1.697). For NDCG(3) and NDCG(10) HLDA conditions performed poorly than 
the baseline. These results partially supports H1.2. 

 

Table 3. The four conditions of LDA using KL-Divergence in the Information Retrieval domain. 
 NDCG(1) NDCG(3)  NDCG(10) 

Baseline 0.057 0.186 0.258  
  Mean Std. Dev. Sig. (p) Mean Std. Dev. Sig. (p) Mean Std. Dev. Sig. (p) 
LDA-SB-TA 0.345 0.051 <.001 0.461 0.042 <.001 0.536 0.033 <.001 
LDA-MB-TA 0.309 0.063 <.001 0.418 0.045 <.001 0.52 0.039 <.001 
LDA-SB-RI 0.36 0.066 <.001 0.484 0.053 <.001 0.556 0.045 <.001 
LDA-MB-RI 0.336 0.05 <.001 0.456 0.054 <.001 0.534 0.041 <.001 
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Figure 3: LDA and HLDA conditions compared with the baseline for NDCG(1) in Information Retrieval domain. 

Baseline is indicated with a dotted line. 

 

 
Figure 4: LDA and HLDA conditions compared with the baseline for NDCG(10) in Information Retrieval 

domain. Baseline is indicated with a dotted line. 
 
H1.1 is supported:  LDA performs significantly better than the baseline in both domains.  
H1.2 is partially supported: HLDA performs significantly lower than the baseline in Algebra domain and 
significantly higher than the baseline only for NDCG(1) in the conditions including Topic Aggregation in the 
Information Retrieval domain. A possible explanation grounds in the nature of HLDA, where each document is 
represented by a single path in the topic hierarchy. For example, in a hierarchy of 4 levels, each document is 
represented with 4 topics. We may expect the model having less ability than LDA to discriminate between 
documents because it represents each document with just few topics. 
 

5.2 Do TA performs better than RI? 
For testing H2 in each domain, a three-way between subjects ANOVA was performed on scores for 

NDCG(1), NDCG(3), and NDCG(10) as a function of the aggregation strategy (TA, RI), the books strategy (SB, 
MB) and the similarity strategy (Cosine, KL-Divergence).  HLDA was not included in this analysis due to the 
poor performance compared with the baseline.  

5.2.1 Algebra domain  
The assumption of homogeneity of the variance was met for NDCG(1), F(7,232) = 1.173, p = .319 and 
NDCG(10), F(7,232) = 1.717, p = .106. Homogeneity of the variance was not met for NDCG(3), F(7,232) = 
2.344, p = .025, thus it is discarded of further analysis. Assumption of normality was met for all conditions in 
NDCG(1) and NDCG(10). NDCG(3) did not met this assumption in conditions TA-MB-Cosine (Shapiro-Wilk = 
.928, p = .043), RI-SB-Cosine (Shapiro-Wilk = .928, p = .043) and RI-MB-Cosine (Shapiro-Wilk = .925, p = 
.037). All other assumptions were met. 
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The patterns of difference on NDCG(1) scores among strategies of similarity were significantly different 
between TA and RI (Figure 5), F(1,239) = 23.862, p<.001, η2 = .093. No other significative interactions were 
observed among NDCG levels. About main effect of the aggregation, marginal means for NDCG(1) and 
NDCG(10) are shown in Table 4. Results showed that TA results in significantly higher scores than RI for all 
NDCG levels averaged across books strategy and similarity strategy. This support H2. For NDCG(1), TA (M = 
.507, SE = .003) was significantly higher than RI (M = .425, SE = .003), F(1,239) = 312.417, p < .001, η2 = .574. 
For NDCG(10), TA (M = .665, SE = .002) was significantly higher than RI (M = .651, SE = .002), F(1,239) = 
26.894, p < .001, η2 = .104. 

In order to find the pattern of differences on the NDCG(1) scores among similarity strategies (Cosine, KL-
Divergence) for TA and RI aggregation strategies, a post hoc test was performed to compare the four conditions: 
TA-Cos, TA-KLDiv, RI-Cos, and RI-KLDiv. In NDCG(1), TA-KLDiv (M = .539) performed significantly better 
than the other three conditions: TA-Cos (M = .475), p < .001, RI-KLDiv (M = .435), p < .001, and RI-KLCos (M 
= .416), p < .001. TA-Cos (M = .475) performs significantly higher than RI-Cos (M = .416), p < .001, and RI-
KLDiv (M = .435), p < .001. However, there was no significant difference between RI-KLDiv and RI-Cos. These 
results support H2 for NDCG(1): TA is always better than RI.  

 
Figure 5: Interaction between aggregation strategy and similarity strategy for NDCG(1) in the Algebra domain. 

5.2.2 Information Retrieval 
The assumption of homogeneity of the variance was met for NDCG(1), F(7,232) = 1.629, p = .128 and 

NDCG(3), F(7,232) = .941, p = .475, and NDCG(10), F(7,232) = 1.205, p = .301. Assumption of normality was 
met for all conditions in NDCG(1). NDCG(3) did not meet this assumption in condition RI-MB-KLDiv (Shapiro-
Wilk = .929, p = .047). NDCG(10) did not meet normality in condition RI-MB-Cosine (Shapiro-Wilk = .922, p = 
.031). All other assumptions were met. 
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Table 4 (bottom part) shows marginal means for all factor levels in NDCG(1), NDCG(3) and NDCG(10) for 
Information Retrieval domain. The patterns of difference on NDCG(3) and NDCG(10) scores among strategies of 
similarity were significantly different between TA and RI. These interactions are: in NDCG(3), F(1,239) = 
10.457, p < .001, η2 = .043; in NDCG(10), F(1,239) = 6.825, p = .01, η2 = .029. No significant interaction were 
observed in NDCG(1) involving aggregation strategy. There was no significant main effect of the aggregation 
strategy in all levels of NDCG. These results do not support H2.  

In order to find the pattern of differences on the NDCG(3) and NDCG(10) scores among similarity strategies 
(Cosine, KL-Divergence) for aggregation strategies (TA, RI), a post hoc test was performed to compare the four 
conditions: TA-Cos, TA-KLDiv, RI-Cos, and RI-KLDiv. In NDCG(3), TA-KLDiv (M = .439) was significantly 
lower than the other three conditions: TA-Cos (M = .492), p < .001; RI-KLDiv (M = .47), p = .007; RI-Cos (M = 
.484), p < .001. There was no other significant difference among conditions. This suggest that TA strategy is 
highly dependent of the similarity strategy used: TA performs lower when KL-Div is used. In NDCG(10), TA-
Cos (M = .571) was significantly better than TA-KLDiv (M = .528), p < .001, and RI-KLDiv (M = .545), p = .003. 
RI-Cos (M = .564) was significantly better than TA-KLDiv (M = .528), p < .001. No other significant difference 
among conditions was found in NDCG(10). These results suggest that there is no difference in choosing between 
TA and RI when either Cosine or KL-Divergence is used. However, Cosine performs better when TA is chosen.  

H2 is partially supported: In Algebra domain, Topic Aggregation (TA) strategy performs better than Re-
Indexing (RI). Interactions with similarity strategies shows that when TA is used, KL-Divergence is the best 
similarity strategy. However, the results are different in Information Retrieval domain, where there is no 
difference between TA and RI and Cosine performs better than KL-Divergence.  

One possible explanation is the different nature of the two domains and the difference in the collections. For 
example, we look at the vocabulary size that LDA is using (after stopword removal) in each domain and found 
out that in Algebra, a single book produce a vocabulary of 2,220 terms, and in Information Retrieval, a single 
book model worked with a vocabulary of 13,405 terms. 

5.3 Do MB perform better than SB? 
The ANOVA analysis described in the previous section is also used to test H3.  

5.3.1 Algebra domain 
In Algebra domain, there were no significant interactions among books and similarity strategies and/or 

aggregation strategies. About main effect of books strategies, results showed that SB produce significantly higher 
scores than MB for all NDCG levels averaged across aggregation strategies and similarity strategies (Table 4, row 
labeled Books). For NDCG(1), SB (M = .482, SE = .003) was significantly higher than MB (M = .451, SE = .003), 
F(1,239) = 46.306, p < .001, η2 = .166. For NDCG(3), SB (M = .60, SE = .003) was significantly higher than MB 

Table 4: Marginal Means  
  NDCG(1) NDCG(3) NDCG(10) 
Algebra  M SE M SE M SE 

Topic Aggregation (TA) .507 .003 .602 .003 .665 .002 Aggregation 
Re-Indexing (RI) .425 .003 .568 .003 .651 .002 
Single Book (SB) .482 .003 .600 .003 .672 .002 Books 
Multiple Books (MB) .451 .003 .570 .003 .644 .002 
Cosine .446 .003 .561 .003 .647 .002 Similarity 
KL-Divergence .487 .003 .610 .003 .669 .002 

 NDCG(1) NDCG(3) NDCG(10) 
Information Retrieval M SE M SE M SE 

Topic Aggregation (TA) .339 .006 .465 .004 .550 .003 Aggregation 
Re-Indexing (RI) .349 .006 .477 .004 .555 .003 
Single Book (SB) .355 .006 .485 .004 .559 .003 Books 
Multiple Books (MB) .333 .006 .458 .004 .545 .003 
Cosine .351 .006 .488 .004 .568 .003 Similarity 
KL-Divergence .338 .006 .455 .004 .537 .003 
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(M = .57, SE = .003), F(1,239) = 69.409, p < .001, η2 = .230. For NDCG(10), SB (M = .672, SE = .002) was 
significantly higher than MB (M = .644, SE = .002), F(1,239) = 98.257, p < .001, η2 = .298. These results do not 
support H3. 

5.3.2 Information Retrieval 
Similar result were obtained in Information Retrieval domain regarding books strategies. There were no 

significant interactions with the other factors (similarity, aggregation) and the main effect of books were 
significant in all levels of NDCG averaged across aggregation strategies and similarity strategies (see Table 5, 
bottom part). For NDCG(1), SB (M = .355, SE = .006) was significantly higher than MB (M = .333, SE = .006), 
F(1,239) = 7.981, p = .005, η2 = .033. For NDCG(3), SB (M = .485, SE = .004) was significantly higher than MB 
(M = .458, SE = .004), F(1,239) = 20.361, p < .001, η2 = .081. For NDCG(10), SB (M = .559, SE = .003) was 
significantly higher than MB (M = .545, SE = .003), F(1,239) = 7.919, p = .005, η2 = .033. These results do not 
support H3. 

H3 is not supported in either Algebra and Information Retrieval domains. Results showed that the model built 
using a single book (SB) will give significantly better results than the model built using multiple books (MB), 
regardless of the use of different strategies for aggregation and similarity.   

6. CONCLUSIONS 
In this work we explored the use of LDA and HLDA topic models within collections of textbooks for the task 

of document linking. We applied different approaches for building the topic model considering the hierarchical 
structure of the textbooks. We showed that LDA is a valuable alternative and performs much better than term-
based approaches, specially, for finding the top similar documents (NDCG(1), NDCG(3)). We discovered that a 
simple mechanism of aggregating the weighed topic distributions along the hierarchical structure of the textbooks 
works the best, and that the topic model build using one textbook makes a better document matching than a model 
built using multiple books. The results also showed that different apporaches for computing similarity among 
topic distributions worked differently in different domains.  

We believe that using LDA is a promising approach for addresing the problem of horizontal navigation using 
open corpus structured collections. The ability of the topic-based model to accurately find the very first top 
similar documents is a clear advantage over traditional methods and can be used to implement better 
recommender support in adaptive educational hypermedia systems. It is in our research agenda to incorporate this 
technology in the e-learning environments as long as to keep investigating mechanisms to improve the quality of 
the models and extend the use to tasks other than document matching. Our future work includes to apply 
techniques of topics models evaluation, to combine topics and textbooks structure to discover semantic relations 
among the topics, to combine topics models with keyword and concept extraction techniques, and to further 
investigate the application in other domains.  
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