Collaborative Filtering

Peter Brusilovsky

with slides by Danielle Lee and Sue Yeon Syn and

Agenda

- Context
- Concepts
- Uses
- CF vs. CB
- Algorithms
- Practical Issues
- Evaluation Metrics
- Future Issues

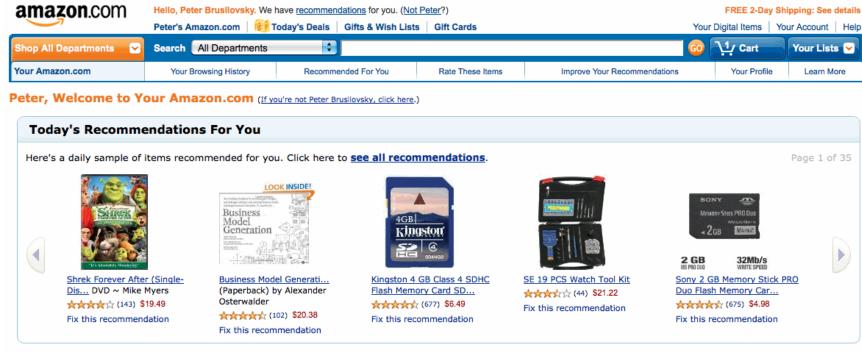
Types of Recommender Systems

- Collaborative Filtering Recommender System
 - "Word-of-Mouth" phenomenon.
- Content-based Recommender System
 - Recommendation generated from the content features asso ciated with products and the ratings from a user.
- Case-based Recommender System
 - A kind of content-based recommendation. Information are r epresented as case and the system recommends the cases that are most similar to a user's preference.
- Hybrid Recommender System
 - Combination of two or more recommendation techniques to gain better performance with fewer of the drawbacks of an y individual one (Burke, 2002).

Recommendation Procedure

- Understand and model users
- Collect candidate items to recommend.
- Based on your recommendation method, predict target users' preferences for each ca ndidate item.
- 4. Sort the candidate items according to the prediction probability and recommend them.

Example: Amazon.com



Coming Soon for You

Source Code [Blu-ray] Blu-ray ~ Jake Gyllenhaal ★★★★ (41) \$19.99

Fix this recommendation

DAVID WEBER HOW FIRM A FOUNDATION

How Firm a Foundation (Safehold) (Hardcover) by David Weber \$16.79

Bleach Uncut Box Set 9 DVD ~
Artist Not Provided

(6) \$36.99

Fix this recommendation

friends' Favorites and Likes

Amazon's Source of Wisdom

Customers Who Bought This Item Also Bought

Programming Pearls (2nd Edition) by Jon Bentley

(39)
\$28.56

Cracking the Coding Interview, Fourth Edition:... by Gayle Laakmann

The Algorithm Design Manual by Steven S. Skiena

★本本本★ (42) ¢64.25

Programming Interviews Exposed: Secrets to Landing... by John Mongan

Concrete Mathematics: A Foundation for Comput... by Ronald L. Graham

******* (31)

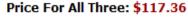
Artificial Intelligence: A Modern Approach (3rd... by Stuart Russell

★★★★☆ (19) \$116.20

Algorithm Design by Jon Kleinberg

★★★★ (23) \$105.00

Frequently Bought Together



Add all three to Wish List

Show availability and shipping details

- This item: Introduction to Algorithms, Third Edition by Thomas H. Cormen Hardcover \$60.00
- Programming Pearls (2nd Edition) by Jon Bentley Paperback \$28.56
- □ Cracking the Coding Interview. Fourth Edition: 150 Programming Interview Questions and Solutions by Gayle Laakmann, Paperback. \$28.80.

Additional Items to Explore

You viewed

Customers who viewed this also viewed

Nikon D3100 14.2MP Digital SLR Camera...

Nikon 55-200mm f/4-5.6G ED IF AF-S DX...

\$249.99 Click for details

Nikon D7000-D5000-D3100-D3000 DSLR... \$70.00 \$37.99

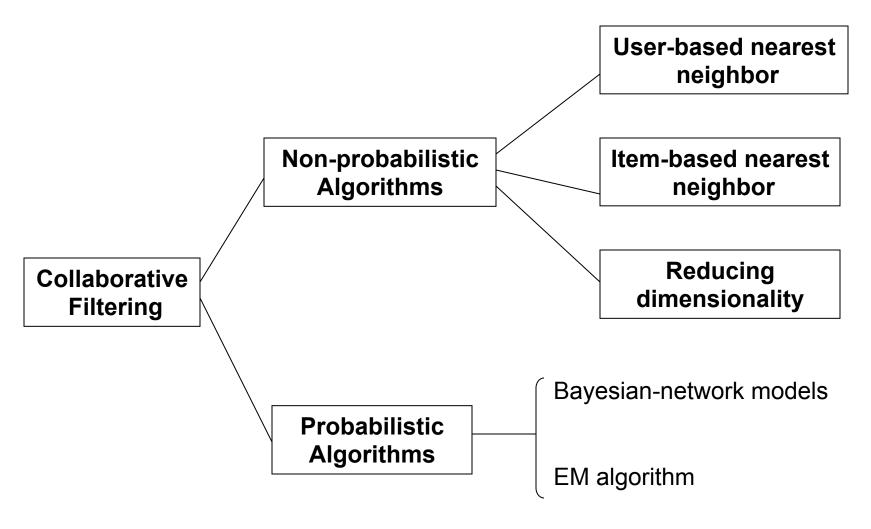
Nikon D3100 14.2MP Digital SLR Camera... \$949.00 \$746.95

Page

What is Collaborative Filtering?

- Traced back to the Information Tapestry project at Xerox PARC
 - It allowed its users to annotate the documents that they read and system recommends
- Expanded to "automatic" CF in the works of Resnick, Riedl, Maes
- More general definition as 'the process of filtering or evaluating items using the opinions of other people.'
- CF recommends items which are likely interesting to a target user based on the evaluation averaging the opinions of people with similar tastes
- Key idea: people who agreed with me in the past, will also agree in the future.
 - On the other hand, the assumption of Content-based recommendation is that Items with similar objective features will be rated similarly.

Algorithms



Concepts

Collaborative Filtering

The goal of collaborative filtering is to predict how well a user will like an item that he has not rated given a se t of historical preference judgments for a community of users.

User

Any individual who provides ratings to a system

Items

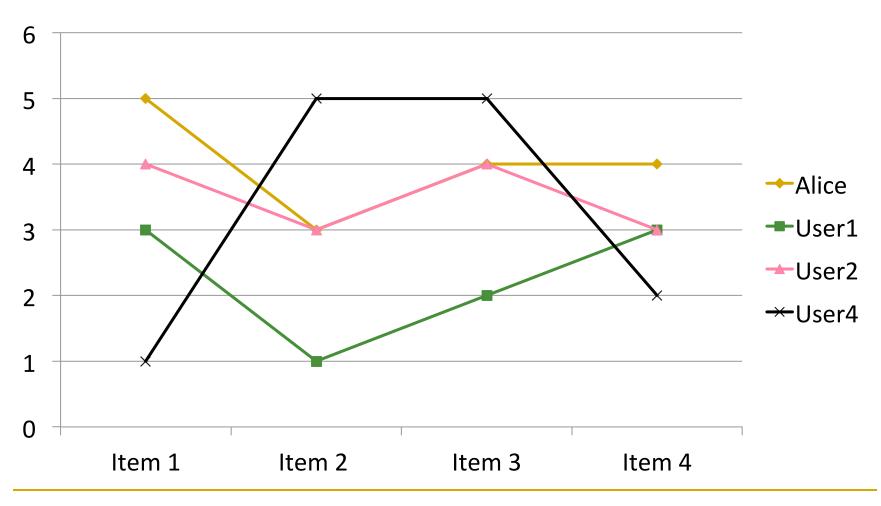
Anything for which a human can provide a rating

User-based CF

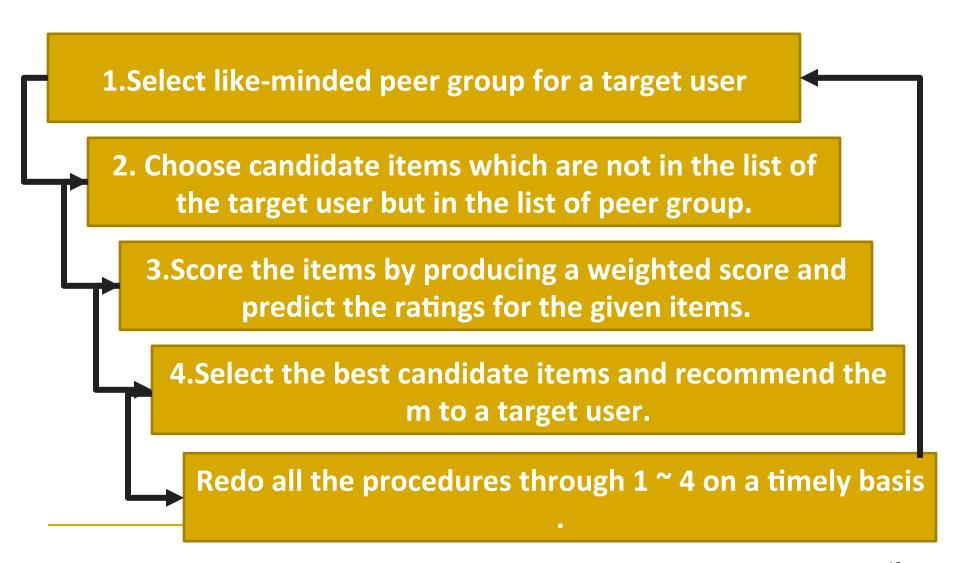
The input for the CF prediction algorithms is a matrix of users' ratings on items, referred as the **ratings matrix**.

Targ	et User	Item 1	Item 2	Item 3	Item 4	Item 5	Average
	Alice	5	3	4	4	???	16/4
	User1	3	1	2	3	3	9/4
	User2	4	3	4	3	5	14/4
	User3	3	3	1	5	4	12/4
	User4	1	5	5	2	1	13/4

User-based CF (2)



User-Based NN Recommendation



User-based NN: User Similarity

 Pearson's Correlation Coefficient for User a and User b for all rated Products, P.

$$sim(a,b) = \frac{\sum_{p \in product(P)} (r_{a,p} - \bar{r}_{a})(r_{b,p} - \bar{r}_{b})}{\sqrt{\sum_{p \in product(P)} (r_{a,p} - \bar{r}_{a})^{2}} \sqrt{\sum_{p \in product(P)} (r_{b,p} - \bar{r}_{b})^{2}}}$$

Average rating of user b

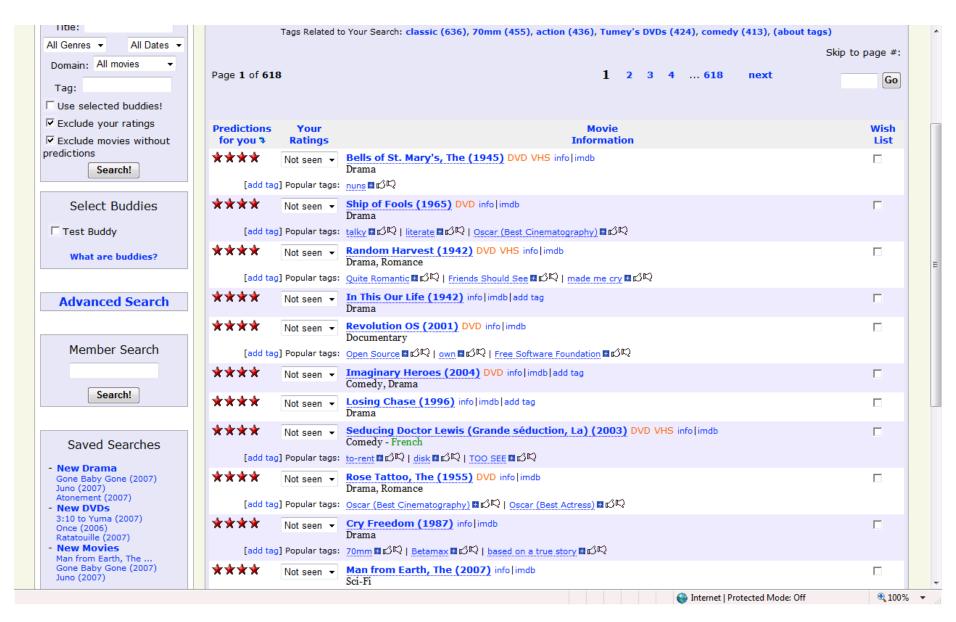
 Pearson correlation takes values from +1 (Perfectly positive correlation) to -1 (Perfectly negative correlation).

User-based NN: Rating Prediction

$$pred(a, p) = \bar{r}_a + \frac{\sum_{b \in neighbors(n)} sim(a, b) \cdot (r_{b, p} - \bar{r}_b)}{\sum_{b \in neighbors(n)} sim(a, b)}$$

One Typical CF recommendation

One Typical CF recommendation



Benefits of Collaborative Filtering

- Collaborative filtering systems work by people in system, and it is expected that people to be better at evaluating information than a computed function
- CF doesn't require content analysis & extraction
- Independent of any machine-readable represent ation of the objects being recommended.
 - Works well for complex objects (or multimedia) such as music, pictures and movies
- More diverse and serendipitous recommendation

CF vs. CB

	CF	СВ
Compare	Users interest	Item info
Similarity	Set of users User profile	Item info Text document
Shortcoming	Needs other users' feedback -> cold start Coverage Unusual interest	Feature matters Over-specialize Eliciting user feedback

Uses for CF: Domains

- Many items
- Many ratings
- Many more users than items recommended
- Users rate multiple items
- For each user of the community, there are other users with common needs or tastes
- Item evaluation requires personal taste
- Items persists
- Taste persists
- Items are homogenous

More on User-Based NN

- Adjusted Cosine similarity, Spearman's rank correlation coefficient, or mean squared different measures.
- Necessity to reduce the relative importance of the agreement on universally liked items: inverse user frequency (Breese, et al., 1998) and variance weighting factor (Herlocker, et al., 1999).
- Skewed neighboring is possible: Significance weighting (Herlocker, et al., 1999).
- Calculating a user's perfect neighborhood is immensely resource intensive calculations

Item-based NN Recommendation

Target	User	Item 1	Item 2	Item 3	Item 4	Item 5	Average
	Alice	5	3	4	4	???	4.0
	User1	3		2	3	3	2.4
	User2	4	3	4	3	5	3.8
	User3	3	3		5	4	3.2
	User4		5	5	2		2.8

Item-based Nearest Neighbor

		Item 4	Item 5
Alice			
User1			
User2			
User3			
User4			-1.8

Item-Based NN Recommendation

- Generate predictions based on similarities between items
 - Usually a cosine similarity used
- Prediction for a user u and item i is composed of a weighted sum of the user u's ratings for items most similar to i.

$$pred(u,i) = \frac{\sum_{j \in ratedItems(u)} sim(i,j) \cdot r_{ui}}{\sum_{j \in ratedItems(u)} sim(i,j)}$$

Item-based Nearest Neighbor

- More computationally efficient than user-based near est neighbors.
- Compared with user-based approach that is affected by the small change of users' ratings, item-based approach is more stable.
- Recommendation algorithm used by Amazon.com (Linden et al., 2003).

Uses for CF: User Tasks

- What tasks users may wish to accomplish
 - Help me find new items I might like
 - Advise me on a particular item
 - Help me find a user (or some users) I might like
 - Help our group find something new that we might like
 - Domain-specific tasks
 - Help me find an item, new or not

Uses for CF: System Tasks

- What CF systems support
 - Recommend items
 - Eg. Amazon.com
 - Predict rating for a given item
 - Constrained recommendations
 - Recommend best items from a set of items

Other Non-Probabilistic CF Algorithms

Association Rule Mining

- I.e., "If a customer purchases baby food then the customer also buys diapers in 70% of the cases."
- Build Models based on commonly occurring patterns in the ratings matrix.
- "If user X liked both item 1 and item 2, then X will most probably also like item 5."

Support
$$(X \rightarrow Y) =$$

Number of Transactions containing X U Y

Number of Transactions

Number of Transactions containing X U Y

Number of Transactions containing X U Y

Number of Transactions containing X

Simple Probabilistic Algorithms

- Represent probability distributions
- Given a user u and a rated item i, the user as signed the item a rating of r: p(r|u, i).

$$E(r \mid u, i) = \sum_{r} r \cdot p(r \mid u, i)$$

 Bayesian-network models, Expectation maximization (EM) algorithm

Dimensionality Reduction Algorithms

- Map item space to a smaller number of underlying "dimensions"
- Matrix Factorization/Latent Factor models:
 - Singular Value Decomposition,
 - Principal Component Analysis,
 - Latent Semantic Analysis, etc.
- Expensive offline computation and mathematical complexity
- Will be presented in a separate lecture

Dimensionality Reduction Algorithms

 Matrix Factorization got an attention since Netflix Prize competition.

Practical Issues: Ratings

- Explicit vs. Implicit ratings
 - Explicit ratings
 - Users rate themselves for an item
 - Most accurate descriptions of a user's preference
 - Challenging in collecting data
 - Implicit ratings
 - Observations of user behavior
 - Can be collected with little or no cost to user
 - Ratings inference may be imprecise.

Practical Issues: Ratings

- Rating Scales
 - Scalar ratings
 - Numerical scales
 - 1-5, 1-7, etc.
 - Binary ratings
 - Agree/Disagree, Good/Bad, etc.
 - Unary ratings
 - Good, Purchase, etc.
 - Absence of rating indicates no information

Practical Issues: Cold Start

- New user
 - Rate some initial items
 - Non-personalized recommendations
 - Describe tastes
 - Demographic info.
- New Item
 - Non-CF: content analysis, metadata
 - Randomly selecting items
- New Community
 - Provide rating incentives to subset of community
 - Initially generate non-CF recommendation
 - Start with other set of ratings from another source outside community

Evaluation Metrics

Accuracy

- Predict accuracy
 - The ability of a CF system to predict a user's rating for an item
 - Mean absolute error (MAE)
 - Classic, but now often criticised
- Rank accuracy
 - Precision percentage of items in a recommendation list that the user would rate as useful
 - Half-life utility percentage of the maximum utility achiev ed by the ranked list in question

Evaluation Metrics

Novelty

 The ability of a CF system to recommend items that the user was not already aware of.

Serendipity

 Users are given recommendations for items that they would not have seen given their existing channels of discovery.

Coverage

The percentage of the items known to the CF system for which the CF system can generate predictions.

Evaluation Metrics

Learning Rate

 How quickly the CF system becomes an effective predictor of taste as data begins to arrive.

Confidence

Ability to evaluate the likely quality of its prediction
 s.

User Satisfaction

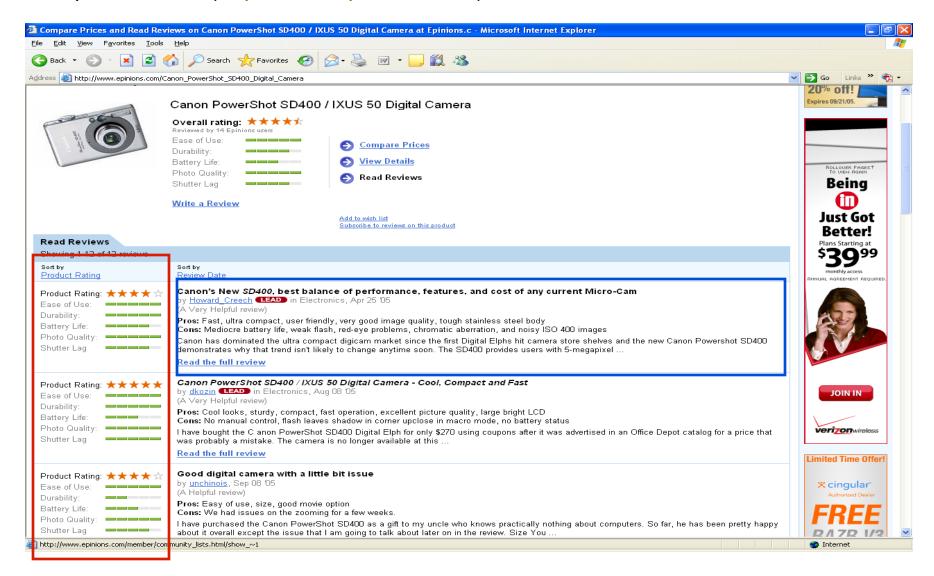
 By surveying the users or measuring retention and use statistics

Additional Issues: Interfaces

- Social Navigation
 - Make the behavior of community visible
 - Leaving "footprints" : read-wear / edit-wear
 - Attempt to mimic more accurately the social process of word-of-mouth recommendations
 - Epinions.com

Additional Issues: Interfaces

Epinions.com (http://www.epinions.com)



Additional Issues: Interfaces

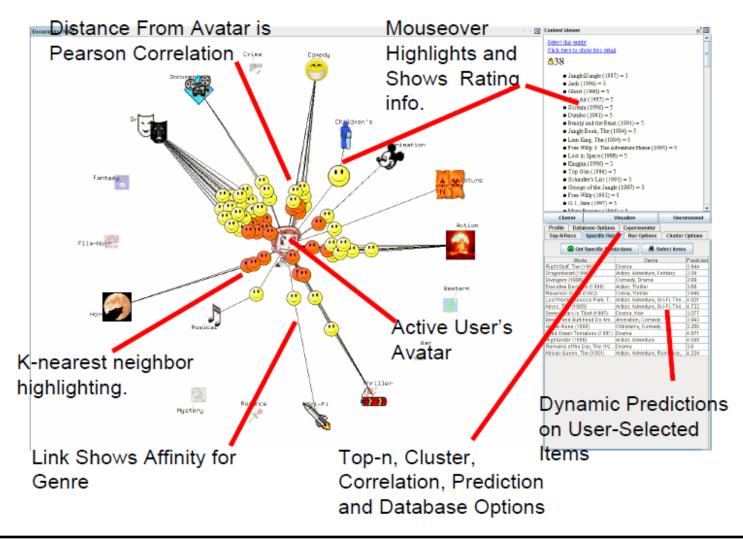
- Explanation
 - Where, how, from whom the recommendations are generated.
 - Do not make it too much!
 - Not showing reasoning process
 - Graphs, key items
 - Reviews

Additional Issues: Privacy & Trust

- User profiles
 - Personalized information
- Distributed architecture

 Recommender system may break trust when malicious users give ratings that are not repre sentative of their true preferences.

Choose your Peers



PeerChooser (CHI 2008) John O'Donovan and Barry Smyth (UCD)