How Science Works

- What you should have learned in School
- History of the Scientific Method
 - Aristotle
 - al-Haytham
 - Galilei
 - Bacon
 - Descartes
- Structure of the Scientific Method

The Scientific Method

- 1. Define the question
- 2. Gather information and resources (observe)
- 3. Form hypothesis
- 4. Perform experiment and collect data
- 5. Analyze data
- 6. Interpret data and draw conclusions that serve as a starting point for new hypothesis
- 7. Publish results
- 8. Retest your work (frequently done by others)

Too Simple?

Scientific Method (1 serving) 1. Ask a question. 2. Formulate a hypothesis. 3. Perform experiment. 4. Collect data. 5. Draw conclusions. Bake until thoroughly cooked. Garnish with additional observations.

How Science Really Works

Site produced by UC Berkeley with NSF Support

The Social Side of Science

The Community Is...

- Source of ideas
- Place to discuss and test ideas
 - Colleagues, presentations, workshops, conferences
- Place to report results
 - Publishing, conference talks, research colloquia
- The mechanism to evaluate quality of ideas, results, contributions
 - Peer review
 - Replication
- The mechanism to propagate ideas
 - Citation
 - Publicity
 - Impact

The Community Judges...

- Whether your paper should be published, whether you should get money, tenure, research space, etc., is judged by your peers
- Whether you should get a Ph.D. is judged by your peers
- Whether you have made a big contribution is judged by your peers (sometimes posthumously)
- Science is not free of scoundrels, although there are more of them in other enterprises: The rewards for being a scoundrels are not that high in science (MD)

Elements of the Scientific Enterprise

- Publications
- Grants
- Peer Review
- Networking
- Professional Societies
- Conferences

Publication: Sharing Ideas & Results

- Oral presentations
- Technical reports, web pages, no review.
- Workshops, symposia, annual meetings, non peer-reviewed conferences. Very fast, some review during the acceptance process and during the presentation. Good to share ideas, early results
- Peer reviewed conferences. Reasonably fast and can be reputable (in our field). Subject to "stupid reviewers"
- Magazines. Publicizing your research broadly. Some are competitive
- Archival Journals. Slow, reputable; archival purpose. Subject to "stupid reviewers," but you can argue with them
- Edited Books. Thematic collection of papers. Weak peer review
- Monographs. Some are fundamental works that are meant to provoke, stir up, and disseminate a whole new view of a discipline. Sometimes summarize years of your work (published earlier)

Publish or Perish

- Your publication record is the most important information about your research
- Job Search
- Promotion and Tenure
- Quantity vs Quality
- Citations

Grants: Serious Work Needs Money

With this much grant money, only experiment we can do is "flip a coin"!

Grants

- Grant: allocating a piece of (limited) resources to you
- Gives you money to buy equipment, to travel, to fund doctoral students who will do the groundwork for you
- •An indirect way of saying to you: This is a good piece of research. It is the right thing to do now
- A way to steer research to the priority directions

Funding Agencies

- National Science Foundation
- National Institute of Health
- US Department of Energy, Education
- Military agencies
 - -DARPA, IARPA
 - -Navy
 - -Air Force
 - -Army
- Foundations
- Industry

Peer Review

The basic mechanism of advancement in science

- Your work is judged by people working in the same area.
- Used in scientific publications and in allocating financial resources.
- Watch out conflicts of interest.
- The process is imperfect, but still good things will eventually get out to the world.
- Do it well it is your moral responsibility.
- Treat others the way you would like to be treated.
- If you criticize somebody's work, you should be able to show a superior approach.

Networking

- You need to know people and you need to be known
- Identify leading researchers and other interesting people in your area
- Find a chance to get know meet, write
- Use presentations wisely: ask questions, talk with a speaker
- Attend professional conferences and use most of it
- Make connections from your work to the work of others, make yourself known
- Use address book and social linking tools to maintain contacts

Professional Societies

- Professional Societies are organized by researchers to help advancing their field
 - A group of like-minded researchers
 - Publish good quality journals
 - Organize professional conferences
 - Recognize leaders through awards
- A professional society can help you to advance your career
 - ACM (SIGART, SIGCHI, SIGWEB, SIGIR...)
 - IEEE (Computer Society...)
 - ASIS&T AAAI ACL AIED Soc
- Join as a student, take most of it

Conferences

- Publication venue
- Networking place
- Received the most up-to-date information about your field
 - Papers
 - Questions and discussion
- See the word
- Try to attend at least one conference per year

Making an Impact: Quality

- Quality first!
 - Publish good quality work well-positioned in context other research
 - Invest in good writing and proofreading
- Pick up good sources to publish your work
 - Topic-relevant, good quality conferences and journals where you work have a higher chance to be noticed

Which conference?

• Which factors are important when selecting a conference to attend?

Piled Higher and Deeper by Jorge Cham

www.phdcomics.com

Judging the Quality

- Conference quality
 - First tier, second tier, and weak and junk conferences
 - Judging the organizer
 - Judging program committee
 - Fighting bogus conferences, SciGen
- Journal Quality
 - Journal Board, Editor
 - Publisher
 - Indexing
- Book Publisher Quality

Are You Ready to Choose?

• Conferences? Journals?

Making an Impact: Publicity

- Promote your work
 - Share papers on research networks (RG, Academia, Mendeley..)
 - Establish Google Scholar (Arnet, Semantic Scholar) profile
 - Use social media (LinkedIn, Twitter)
 - Introduce your work to peers at the conferences
 - Share with authors of similar work, offer comparisons
 - Do not spam! Use legitimate sources and reasons!
- Make yourself known in your field
 - Participate in professional societies
 - Help with conference organization
 - (Co) Organize workshops

Science in Action: Buckminsterfullerene

- A great example of science in action:
 - A TV program on the discovery of Buckminsterfullerene, available in five parts on YouTube:
 - https://www.youtube.com/watch?v=ddJEcTO-9AM (1 of 4)
 - https://www.youtube.com/watch?v=040Jwg1jHpc (2 of 4)
 - https://www.youtube.com/watch?v=XqHMRzX_ImM (3 of 4)
 - https://www.youtube.com/watch?v=woeo0PcuquI (4 of 4)

Science in Action: Buckminsterfullerene

- A great example of science in action
- It is long (around 50 minutes) but please be patient it is worth watching!
- Please pay attention to the following:
 - How did the scientists pictured in the movie get into their research area?
 - How did they pick the problems to work on?
 - How did they get funding for their research?
 - When did they decide to publish their results
 - and what was the potential benefit and the cost of publishing?
 - Global science (World without borders)
 - The importance of "networking"
 - Types of scientific career paths

Buckminsterfullerene: Some Remarks

- No real boundaries for scientists: The world is small
- Networking
 - Places for sabbatical leaves (Kroto, Huffman)
 - Kroto gets a copy of a paper from a friend, who attended a workshop, later gets a paper to review
- Structure of labs (professor, post-docs, research assistants)
 - Somebody has to do the "dirty" work
- Scientists in US (quite likely majority is foreign born)
- What are the typical working places of scientists?
 - Universities
 - Industrial research labs
 - Startup companies (we did not see much of this in the movie)