INFSCI 2480: Adaptive Information Systems

User Models for Adaptive Hypermedia and Adaptive Educational Systems

Peter Brusilovsky
School of Information Sciences
University of Pittsburgh, USA
http://www.sis.pitt.edu/~peterb/

Where we are?

	Search	Navigation	Recommendation
Content-based			
Semantics / Metadata			
Social			

Adaptive systems

Classic loop user modeling - adaptation in adaptive systems

Intelligent vs. Adaptive

- 1. Intelligent but not adaptive (no user model!)
- 2. Adaptive but not really intelligent
- 3. Intelligent and adaptive

3 Dimensions of User Models

- What is being modeled (nature)
- How this information is represented (structure)
- How the models are constructed and maintained

Brusilovsky, P. and Millan, E.: User models for adaptive hypermedia and adaptive educational systems. In: The Adaptive Web: Methods and Strategies of Web Personalization. Lecture Notes in Computer Science, Vol. 4321. Springer-Verlag, Berlin Heidelberg New York, 2007

What is Being Modeled?

- User knowledge of the subject
- User interests
- User goals
- User background
- User individual traits

How to Model User Knowledge

- Scalar model
 - The user knowledge level is modeled as one value
 - Example: MetaDoc, CAT
- Structural model
 - What kind of knowledge?
 - Declarative, procedural, episodic
 - How it relates to expert knowledge?
 - Overlay model -> Bug mode -> Genetic model

Overlay Model of Knowledge

- Domain model
 - The whole body of domain knowledge is decomposed into set of smaller knowledge units
 - A set of concepts, topics, etc
- User knowledge model (aka student model)
 - Overlay of the Domain model
 - Student knowledge is measured independently for each knowledge unit

Vector vs. Network Domain Models

- Vector no relationships
- Precedence (prerequisite) relationship
- is-a, part-of, analogy
 - Wescourt et al, 1977
- Genetic relationships
 - Goldstein, 1979

Vector model

Network model

Simple overlay model

Simple overlay model

Weighted overlay model

Student Modeling Approaches

- Ad Hoc (1-100)
- Heuristic and rule-based (qualitative)
- Simple statisctical (Bush, Atkinson)
- Probabilistic and Bayesian (BN, D-S...)
- Fuzzy
- Neural networks
- Combine approaches and layered models

How to do Course Sequencing

- Needs a Domain Model
- Uses classic or weighted overlay model
- Needs indexing of learning material with domain model
- May also need a learning goal (also based on domain model)

Indexing teaching material

- Types of indexing
 - One concept per ULM
 - Indexing of ULMs with concepts
- How to get the ULMs indexed?
 - Manual indexing (closed corpus)
 - Computer indexing (open corpus)

Simple case: one concept per learning activity

- Random selection if there are no links -Scholar
- Links can be used to restrict the order

MasteryGrids Interface: one *topic* per learning activity

Indexing content with concepts

Simple goal model

• Learning goal as a set of topics

More complicated models

• Sequence, stack, tree

Sequencing with models

- Given the state of UM and the current goal pick up the best topic or ULM within a subset of relevant ones (defined by links)
- Special cases with multi-topic indexing and several kinds of ULM
- Applying explicit pedagogical strategy to sequencing

Maintaining Overlay Models

- Adaptive educational systems use problems, questions, and other evaluation activities to model student knowledge
- If a page is read, an example is browsed, or a problem is solved, knowledge of all involved concepts increases (example: jWADEIn)
 - Links could be used to propagate knowledge
- If problem is not solved, the system needs to allocate "blame" for involved concepts
 - Links could be helpful to avoid noise

Models in SIETTE

Models for interactive problemsolving support and diagnosis

- Domain model
 - Concept model (same as for sequencing)
 - Bug model
 - Constraint model
- Student model
 - Generalized overlay model (works with bug model and constraint model too)
- Teaching material feedback messages for bugs/ constraints

Bug models

- Each concept/skill has a set of associated bugs/misconceptions and sub-optimal skills
- There are help/hint/remediation messages for bugs

Do we need bug models?

- Lots of works on bug models in the between 1974-1985
- Bugs has limited applicability
 - Problem solving feedback only. Sequencing does not take bugs into account: whatever misconceptions the student has effectively we only can re-teach the same material
 - Short-term model: once corrected should disappear, so not necessary to keep

Constraint Model: SQL-Tutor

• Domain model: Set of constraints (procedural, evaluation knowledge); Student model: Bug model

Models for example-based problem solving support

- Need to represent problem-solving cases
- Episodic learner model
 - Every solution is decomposed on smaller components, but not concepts!
 - Keeping track what components were used and when - not an overlay!
- ELM-PE and ELM-ART only systems that use this model

Multi-Aspect Models in ADAPTS - an adaptive IETM

What's in adaptive content?

ADAPTS dynamically assembles custom-selected content.

Domain model example

CONCEPT

Reeling Machine

CONCEPT

Sonar Data Computer

CONCEPTSonar System

	Principles of Operation	Removal Instructions	Testing Instructions	Illustrated Parts Breakdown
	Principles of Operation	Removal Instructions	Testing Instructions	Illustrated Parts Breakdown
	Principles of Operation	Removal Instructions	Testing Instructions	Illustrated Parts Breakdown

Domain content

User model

- Characterizes user ability at each element of the domain model
 - Size of model is bounded by domain
 - Weights on different types of elements account for learning styles and preferences
 - Can be time sensitive
- Constrains the diagnostic strategy

User model example

CONCEPTReeling Machine

CONCEPTSonar Data Computer

CONCEPTSonar System

AT2 Smith

AD2 Jones

ROLE
Theory of
Operation

ROLE Removal Instructions ROLE Testing Instructions

IPB

Adaptive content selection

- Information is custom-selected for a user
 - Level of detail offered depends upon who the user is (i.e., his level of expertise)
 - Selected at a highly granular level, e.g., for each step within a procedure
- Performance-oriented training is presented as part of content

Interest Modeling

- User interests are typically modeled by overlay models as well
- Keyword model of user interests (profile)
 - Learned about it in user profiling lecture
 - User profile is a *keyword overlay*
 - "sub-symbolic" model
- Concept-level model of user interests
 - Concept overlay

Domain Models

- A domain model is required for interest modeling
 - Traditional domain model for interest modeling in educational context
 - A taxonomy of interest areas for non-educational areas

Example:
Domain model
for adaptive
News system

Overlay Model of Interests

• For each domain concept or taxon an overlay model stores estimated level of

interest

New s source Business / Politics Sports economy Water Track&Field sports 0.0 Diving Surfing Sailing 0.2 0.7 0.0 0.7 Scuba Wind Surfing Freediving Snorkeling divina surfing (surfboard)

Benefits of Concept-Level Overlay Interest Modeling

- The ability to use formal ontologies
 - Developed for a range of reasons
 - Pushed by the Semantic Web
- Links allow spreading activation
- *Understandable* by the users
 - Could be initialized and edited by the users
 - Can be used for explaining personalization

Ontological Interest Modeling

- = Concepts
 - = Terms

- Interests are deduced from the content of "interesting documents"
- Needs manual or automatic document to ontology matching

Jokela, S., Turpeinen, M., and Sulonen, R. (2000) *Ontology Development for Flexible Content*, Proceedings of the HICSS-33, IEEE Computer Society, January 4-7, 2000, Maui, Hawaii, USA,

Spreading Activation

- Evidence of user interests can be propagated along the links
- Spreading activation over the model may be used for more reliable modeling and to deal with sparsity

Initializing and editing models

- Concept-level models are *understandable* by end users since they appeal to their own conceptualization of the domain
- Users can initialize a model or edit it if she thinks that the system is not reflecting her interests

• Editing keyword-level models produces poor results (Ahn YourNews study)

Ahn, J.-w., Brusilovsky, P., Grady, J., He, D., and Syn, S. Y. (2007) Open user profiles for adaptive news systems: help or harm? 16th international conference on World Wide Web, WWW '07, Banff, Canada, May 8-12, 2007

Explanations

• The presence of concepts or topics allows to better explain why a specific item is recommended to the user

Personalized access to scientific publications: from recommendation to explanation Dario De Nart, Felice Ferrara, Carlo Tasso, 2013

Overlay model and content indexing

- The use of overlay models requires content to be related to domain concepts/topics, this is known as *content indexing*
- A range of indexing approaches exist in AH
 - Simplest case: Nodes are concepts
 - InterBook, ELM-ART, ISIS-Tutor
 - Indexing nodes with concepts
 - InterBook, ELM-ART, ISIS-Tutor, AHA
 - Indexing *fragments* with concepts
 - MetaDoc, AHA, PT

Generalized overlay models

- The overlay approach is quite generic, many aspects could be modeled as "generalized overlays"
- What has been learned so far
 - Knowledge modeling with overlays
 - Domain model network of concepts
 - User model weighed overlay of the domain model indicating concept knowledge
 - Interest modeling with overlays
 - Domain model topic ontology
 - User model overlay of the ontology indicating topic interests

Generalized overlay model for user goals and stereotypes

Goals

- Domain model: a set of possible goals, tree of goals
- User model: on overlay of this set/tree showing probabilities that the user has one of these goals

Stereotypes

- Domain Model: a set or a taxonomy of user stereotypes
- User model: on overlay of this DM showing probabilities that the user belongs to one of these stereotypes

Indexing with generalized model

- goals are nodes
 - HYPERFLEX
- content fragments are indexed with goals
 - PUSH
- nodes are indexed with user's tasks
 - HYNECOSUM:
- nodes are indexed with stereotypes
 - EPIAIM, Anatom-Tutor, C-Book