
1

INFSCI 2140
Information Storage and Retrieval
Lecture 7: Data Structures and Algorithms

Peter Brusilovsky
http://www2.sis.pitt.edu/~peterb/2140-051/

Overview

 Document processing, storage, search

 Document files
– the issue of record length

 Search problem

 Simple search solutions

 Algorithms and complexity

 Advanced searchable data structures

2

Document processing and search

Processing

Searching

Documents

Document
File

Searchable
Data

Structure

Document processing and search

Document
File

Searchable
Data

Structure

 Intelligent Miner for Text turns unstructured information into business
 knowledge for organizations of any size, from small businesses to global
 corporations. This knowledge-discovery "toolkit" includes components for
 building advanced text-mining and text-search applications.
 Intelligent Miner for Text offers system integrators, solution providers, and
 application developers a wide range of text-analysis tools, full-text retrieval
 components, and Web-access tools to enrich their business-intelligence and
 knowledge management solutions. With Intelligent Miner, you can unlock the
 business information that is "trapped" in email, insurance claims, news feeds,
 and Lotus Notes, and analyse patent portfolios, customer complaint letters,
 even competitors' Web pages.

intelligent,text miner
business, knowledge management

Indexing

3

Document File

 A collection of documents is stored as a
document file

 A representation of a document in a
document file is called a record

 Type of document files
– Sequential

– Hashed

– Hierarchical and netted

Sequential files

 Documents are arranged in a sequence
– Usually sorted by some criteria so similar

documents are close to each other

 Records in a document file can have
fixed of variable length

 Each record in a file has an address
and can be retrieved given this address
– Need random access device for efficiency

4

Fixed or variable record length
A0 A1 A2 AN

A0 A1 A2 ANA3

A3

sizeof(R) Ak = k * sizeof(R)

Ak = Ak-1 + sizeof(Rk-1)

Fixed length example
A0 A1 A2 AN

Tarkovsky 1983 ...#112

AuthorID Year

5

Variable length example
A0 A1 A2 AN

Tarkovsky 1983 In his movie#112

AuthorID AbstractYear

From variable to fixed length
A0 A1 A2 AN

In his movie ...

Tarkovsky 1983 A117...#112

A117

Main file, fixed record length

AuthorID Reference to AbstractYear

Abstracts, variable record length

Typical “DB” file

Typical “IR” file

6

Main problem of search

 Find all records (documents) with the
given value of the key
– Year = 1998

– Fellini in Director

– Brilliant in Abstract

 The search techniques for fixed and
variable length record files are
technically different but conceptually
similar

Search Techniques

 Sequential search, unordered records
– Linked lists for variable size records

 Sequential search, ordered records
– Linked lists for variable size records

 Binary search
– Binary trees for variable size records

 Direct search (hashing)

7

Sequential search

8

Complexity

 Big-O notation

 Sequential search: n/2 (n if not found)

 Sequential ordered search: n/2  O(n)

 Binary search  O(log2 n
)

9

Sort Classification

10

Complexity for various sorts

 Complexity for insertion sorts:
– straight insertion: O(n2)

– Shell sort O(n1.25)

 Complexity for selection sorts
– straight selection: O(n2)

– heap sort: O(nlog2n)

 Complexity for exchange sorts
– bubble sort: O(n2)

– quick sort: O(nlog2n)

Hashing and hashed files

A0 A1 A2 AN

Ak = hashfunction(Keyk)

Hash function

Key

11

Problems of hashing

 Hard to define good hash function
– Wasted space vs. collisions

 No sequential processing

 Similar documents are scattered all over
the file

 As a result, hashing has relatively little
use in IR

Searching in IR document files

 Need additional data structures for fast
search in large IR document files
– Binary tree over sequential file

– Indexed files

– Inverted files

– B-trees

– Suffix trees

– Signature files

– Tries

12

Simple “full” index file

A0

A0 A1 A2 ANA3

A1 A2 AN

 Each document is indexed in the index file

 Can be used for binary search in an “IR” file

 Waste of space for large files

Typical index file

A0

A0 A1 A2 AN

A50 A100

 File is split into sections. Each section is indexed in
the index file

 Use combination of binary and sequential search

 Large files need hierarchical indexing (B-trees)

13

Inverted files

computer
bit

byte

memory
byte

computer
bit

memory

A0 A1 A2 A3

computer
byte

bit(2) A0 A2

byte(3) A0 A1 A3

computer(3) A0 A2A3

memory(2) A1 A2

Dictionary Inversion lists (occurrences)

Document file

What is in inversion lists?

 Document reference
– Address, record number

 Location inside the document
– Where is the word: address, number, block

 Parameters
– Weight of this term for the document

 B-tree is better than dictionary to point
to inversion lists

14

Google

Not really searching the WWW, but querying an
respresentation of a “pre-searched” WWW.

Google’s indices map keys (search vocabulary
elements) to web pages.

 Require ~ 50GB

 Proposal suggests that its Document Index is btree
based (~10 GB)

The following image is from Brin and Page doc:
http://www7.scu.edu.au/programme/fullpapers/1921/com1921.htm

15

Google, cont.

 The proposal of Sergey Brin and
Lawrence Page estimated originally
that they would need about 100 Million
pages.

 Now over 1 Billion pages – off by an
order of magnitude.

 How big is a billion pages? 4
terabytes!

Btree - requirements

 Invented by R. Bayer in 1970

 A Btree is a generalization of a Multiway
tree which in turn is a generalization of
a binary tree.

 Requirements:
– Maintain balance

– Minimize Disk I/O - why?

16

Btree – requirements, cont.

 Disk access speed

 – between 3ms and 10ms

 Compare this to CPU speeds

 So, although btrees are old technology,
they remain useful!

 Common to trees:

 RANDOM access - not direct access

Btree - definition

 A multiway tree in which
– All leaf nodes are on the same level

– Every non-leaf node, except the root, has
between M/2 and M descendents
(leaf nodes have zero descendents)

– The root can have 0 - M descendents

 (All descendents are non-empty)

 M is the order of the btree

 What determines M?

17

Btrees

 The order of a binary tree is trivially 2.

 The order (M) of a btree is set at
creation. A function of
– Size of node - How is this determined?

– Size of keys (or partial keys)

 What does a node look like?

Btree

 A simple example of Btree

 What is its order?

18

Btree - height

 The maximum height of a btree index determines the
path length or max number of accesses for a search.
Remember, each node represents a potential disk
access.

 Assume that each internal node has the minimum
number of descendents (M/2); this results in
maximum depth of tree.

 For N elements,
 max. height < logm/2 ((N+1)/2)

 So search is O(logm/2 N)

Some max. height examples

 For M = 200

log M/2 (1M) <= 3

log M/2 (1G) <= 5

log M/2 (1T) <= 7

log M/2 (1P) <= 8

log M/2 (1E) <= 9

19

Btree Improvements

 Most Btrees today are really B+trees
– Records (vs keys) are stored in leaf nodes
– Leaf nodes are links to provide sequential as well

as random access

 Can relax the constraint on number of
elements for leaf nodes without affecting
algorithms.

 Variable-length keys – can relax bounds
(m/2, m) for number of descendents

 High Concurrency – multi-granular locking

Btree Access Methods

 Create a btree
 Destroy a btree
 Search for a specific record (query)
 Insert a record
 Delete a record
 Read a record
 Iterator operations
 Demo:

http://sky.fit.qut.edu.au/~maire/baobab/baobab.html

 Tutorial: http://www.bluerwhite.org/btree/

