INFSCI 2140

Information Storage and Retrieval
Lecture 7: Data Structures and Algorithms

Peter Brusilovsky
http://lwww?2.sis.pitt.edu/~peterb/2140-051/

Overview

m Document processing, storage, search

m Document files
— the issue of record length

m Search problem
m Simple search solutions
m Algorithms and complexity
] m Advanced searchable data structures

Document processing and search

Document processing and search

NED EOE N B wed B EOE e

Document File

m A collection of documents is stored as a
document file

m A representation of a document in a
document file is called a record
m Type of document files

— Sequential
— Hashed

Sequential files

m Documents are arranged in a sequence
— Usually sorted by some criteria so similar
documents are close to each other
m Records in a document file can have
fixed of variable length

m Each record in a file has an address
and can be retrieved given this address
— Need random access device for efficiency

m
]
l — Hierarchical and netted
m
]

Fixed or Variable record length

—>
sizeof(R) =k * sizeof(R)

= Ay + sizeof(Ry4)

Fixed length example

A
! ! ! !
ID Author \ Year

#112| Tarkovsky [1983

N OEOE e hlm

Ao A A An

v v o v

ID Author Year Abstract

#112| Tarkovsky [1983| .. In his movie ...

Ao Aq Ay An

v v v v

Main file, fixed record length Typical “DB” file
Year

ID Author Reference to Abstract

#112| Tarkovsky [1983| ... |Aw

A
Abstracts, variable record length ~ |

Typical “IR” file

Main problem of search

m Find all records (documents) with the
given value of the key
— Year=1998
— Fellini in Director
— Brilliant in Abstract

m The search techniques for fixed and
variable length record files are
technically different but conceptually
similar

m Sequential search, unordered records
— Linked lists for variable size records

m Sequential search, ordered records
— Linked lists for variable size records

m Binary search
— Binary trees for variable size records

m Direct search (hashing)

I

] Search Techniques
[
I

Sequential search

Locatlon Wanted l

a[0] a[1] a[2] a[3] a[4] a[b] a[6] a[7] a[8] a[9] a[10] a[11]

oY _l-j NN O e

4 [21| 36| 14 22 | 7 | 81| 77| 10
Target Given
(14)

e

al0] "a[1] af2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11] q
|4‘21‘36|14‘62‘91‘8‘22‘7‘81‘77‘10‘ o
m

al0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11] t
’4‘21|36|14’62‘91’8’22‘7’81‘77’10‘ i
alo] a[l] a| a[3] al4] a[5] a[6] a[7] a[8] a[9] a[10] a[11] s
‘4‘21 36 14 62‘91 8‘22‘7‘81‘77‘10 =y
s
r

al0] a[1] a[2] a3] al4] a[5] a[6] a[7] a[8] a[9] a[10] a[11] =
‘4 21 36 14 62‘91‘8‘22 7|81‘77‘10 h

first mid last
FE

al0] af1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11
4 7 8 (10| 14| 21| 22|36 | 62| 77| 81|91

first mld last
22> 21

al0] a[1] a[2] a[3] af4] a[5] a[6] a[7] a[8] a[9] ahm a[11]
| 4 | | 8 |1o| 14| 21| 22| 36| 62| 77 81 |91

first mid last
E@\

al0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11]
| 4 | 7 | 8 |10| 14| 21| 22| 36| 62| 77| 81 |91

first mid last

[e][e][7]

function terminates

S0=00 K=Y =0

VIR e DED R e

Complexity

m Big-O notation
m Sequential search: n/2 (n if not found)
m Sequential ordered search: n/2 = O(n)

m Binary search = O(log, n)

n3n2| |nlogn n

O(n) 7

Sort Classification

External
Internal I (Merges)

* Natural
| * Balanced

InsertlonI SelectionI ExchangeI * Polyphase

* Insertion e« Selection e« Bubble
e Shell * Heap * Quick

li

Complexity for various sorts

m Complexity for insertion sorts:
— straight insertion: O(n?)
— Shell sort O(n*-2%)

m Complexity for selection sorts
— straight selection: O(n?)
— heap sort: O(nlog,n)

m Complexity for exchange sorts
— bubble sort: O(n?)
— quick sort: O(nlog,n)

Hashing and hashed files

A, = hashfunction(Key,)

-z
>
«2
2

10

Problems of hashing

m Hard to define good hash function
— Wasted space vs. collisions

m No sequential processing

the file

m As a result, hashing has relatively little
use in IR

m Similar documents are scattered all over

Searching in IR document files

m Need additional data structures for fast
search in large IR document files
— Binary tree over sequential file
— Indexed files
— Inverted files
— B-trees
— Suffix trees
— Signature files
— Tries

VIR e DED R e

11

u

Simple “full” index file

A A A A

m Each document is indexed in the index file
m Can be used for binary search in an “IR” file
m Waste of space for large files

Typical index file

Ao Ay Ay Ay

m File is split into sections. Each section is indexed in
the index file

m Use combination of binary and sequential search
m Large files need hierarchical indexing (B-trees)

12

Inverted files

Document file

A, A, A, A,
! ! ! !

Dictionary Inversion lists (occurrences)

What 1s 1n inversion lists?

m Document reference
— Address, record number
m Location inside the document
— Where is the word: address, number, block
m Parameters
— Weight of this term for the document
B = B-tree is better than dictionary to point

=l to inversion lists

RN wel D

13

Google

Not really searching the WWW, but querying an
respresentation of a “pre-searched” WWW.

Google’s indices map keys (search vocabulary
elements) to web pages.
m Require ~ 50GB

m Proposal suggests that its Document Index is btree
based (~10 GB)

The following image is from Brin and Page doc:
http://lwww7.scu.edu.au/programme/fullpapers/1921/com1921.htm

Reposito

N RN e D

14

Google, cont.

m The proposal of Sergey Brin and
Lawrence Page estimated originally
that they would need about 100 Million
pages.

= Now over 1 Billion pages — off by an
order of magnitude.

m How big is a billion pages?

i
:
;
:

Btree - requirements

m Invented by R. Bayer in 1970

m A Btree is a generalization of a Multiway
tree which in turn is a generalization of
a binary tree.

= Requirements:

— Maintain balance
— Minimize Disk I/O -

15

Btree — requirements, cont.

m Disk access speed
— between 3ms and 10ms
m Compare this to CPU speeds

m So, although btrees are old technology,
they remain useful!

m Common to trees:
RANDOM access - not direct access

VIR e DED R e

Btree - definition

= A multiway tree in which
— All leaf nodes are on the same level

— Every non-leaf node, except the root, has
between M/2 and M descendents
(leaf nodes have zero descendents)

— The root can have 0 - M descendents
(All descendents are non-empty)

m M is the order of the btree

m What determines M?

16

Btrees

— Size of node -

— Size of keys (or partial keys)

m The order of a binary tree is trivially 2.

m The order (M) of a btree is set at
creation. A function of

Btree

m A simple example of Btree
m What is its order?

10

=

4
6 7 9

11 12 15

17 22

36

VIR e DED R e

17

Btree - height

m The maximum height of a btree index determines the
path length or max number of accesses for a search.
Remember, each node represents a potential disk
access.

m Assume that each internal node has the minimum
number of descendents (M/2); this results in
maximum depth of tree.

m For N elements,

max. height < log,,,;, ((N+1)/2)

So search is O(log,,, N)

Some max. height examples

m For M =200
log y, (1IM) <=3
log y, (1G) <=5
log v, (1T) <=7
log y, (1P) <=8
log y, (1E) <=9

VIR e DED R e

18

Btree Improvements

m Most Btrees today are really B+trees
— Records (vs keys) are stored in leaf nodes
— Leaf nodes are links to provide sequential as well

as random access

m Can relax the constraint on number of
elements for leaf nodes without affecting
algorithms.

m Variable-length keys — can relax bounds
(m/2, m) for number of descendents

m High Concurrency — multi-granular locking

N EOE N e

Btree Access Methods

m Create a btree
m Destroy a btree
BN w Searchfora specific record (query)
m Insert a record
m Delete a record
m Read a record
m lterator operations
2 = Demo:

l = Tutorial: http://www.bluerwhite.org/btree/

e

19

