INFSCI 2140 Information Storage and Retrieval Lecture 6: Taking User into Account

Peter Brusilovsky

http://www2.sis.pitt.edu/~peterb/2140-051/

Ad-hoc IR in text-oriented DS

- The context (L1)
- Querying and matching (L2,L3)
- How to evaluate results (L4)
- How it all works internally (L5,L7)
- Better search and presentation taking user unto account: RF, QE, UM (L6)
- Better organization and visualization of search results (L10)

Overview

- Query Expansion and Relevance Feedback
- User modeling and adaptive information access
 - User profiles
 - Adaptive filtering
 - Adaptive search
 - Adaptive presentation in IR and information systems

Relevance Feedback and Query Expansion - 3 points of view

- Pragmatic view
 - Modern Information Retrieval, Baesa-Yates
- Designer's view
 - Bob Korfhage
- Interaction view
 - Nick Belkin

QE: Pragmatic point of view

- Query Expansion is a general technique of improving query to achieve better result (precision or recall)
- The idea is to "steer" the query closer to the vector subspace of the relevant documents
- How to steer? Vector operations:
 - Project (remove), Add, Re-weight

Query Expansion

- The idea: add some extra "good" terms to a query in a hope that it will bring more results or better precision
- Possible sources
 - Automatic: Properties of the document space and term distribution
 - · Local analysis (current search)
 - Global analysis (whole space)
 - User-based: Relevance feedback

Automatic Query Expansion

- Local analysis: documents and term distribution in the current search
 - Local Clustering
 - Local Context Analysis
- Global analysis: document and term distribution in the whole space
 - Using Similarity Thesaurus
 - Using Statistical Thesaurus

QE with local clustering

- Idea: add terms that are similar to good terms in the context of good documents
- Step 1: Cluster all terms using similarity metrics based of co-occurrence in documents
- Step 2: For each term in a query add M nearest neighbors in the cluster to a query

QE with local context analysis

- Idea add concepts "similar" to the whole query
- Step 1: Get N top ranked passages using original query
 - Document is divided into small chunks
- Step 2: Calculate similarity between each concept from the passage and the whole query using a version of TF*IDF
- Step 3: Add top concepts to the query

QE with global analysis

- Similar ideas based on global analysis of terms in document collection
- Use global similarity thesaurus (terms clustered as documents with inverse indexing)
- Represent a query in the space of concepts and find terms that are most close in this space to the whole query

Korfhage's view

- QE is a manipulation with query to improve search results
- Main source of information user
- What can be changed
 - query, document, algorithms
- What kind of manipulation
 - re-weighting, adding/removing, altering
- User profiles and genetic algorithms

Belkin's view

- Information retrieval is an interaction between a human and information [system]
- Query is simply the first step in a dialogue - a part of user model that the system can build
- More interaction is required to update models of dialog partners

Relevance Feedback

- A IR system can learn something about the user preferences using the relevance feedback
- The user indicates the relevance of a set of documents and the system uses this feedback to modify its retrieval behaviors
- Then a new set of documents is presented and the retrieval process starts again

What kind of feedback?

- Positive feedback
 - Mark relevant documents
- Negative feedback
 - Mark irrelevant documents
- Mixed feedback
 - Positive and negative
 - Rating on some scale (cold/hot/lukewarm)

Relevance Feedback: The Idea

- A system can use positive relevance judgment trying to obtain more documents similar to those judged relevant
- A system can use negative relevance judgments trying to avoid documents similar to the one that were rejected

Relevance Feedback: Where?

- Where can we apply the information provided by the user?
- Query
- Profile
- Document representation
- Retrieval algorithm

Modifying the query

- This is what we can call user-based query expansion
- It is the simplest way
- It has no lasting impact on the system (that is a mixed blessing)
- Explored by Salton and Rocchio
 - Rocchio Algorithm

Modifying the user profile

- Profile a long term representation of user inderests
 - We will learn details later
- These modifications last
- User profile and query often have the same or nearly the same representation
 - it is possible to use the same techniques
- The modifications should not be made on the basis of a single query

Modifying the document representation

- Modifications that last and can effect the behavior of the system for all the users
- It can be accepted if the community of users is a closed community of experts
- Methods are similar to query modification
 - Some variants of Rocchio algorithm can be used

Modifying the search algorithm

- It is something to do very carefully
- It is possible to change
 - Algorithms parameters (easy to undo)
 - The algorithm itself (this modifies deeply the behavior of the system

Rocchio Algorithm (IR)

$$Q' = Q + \frac{1}{n_i} \alpha \sum_{i=1}^{n_1} R_i - \frac{1}{n_2} \beta \sum_{i=1}^{n_2} S_i$$

where

Q is the vector of the initial query

 R_i is the vector for relevant document

 \mathbf{S}_{i} is the vector for the irrelevant documents

 α, β are Rocchio's weights

Relevance feedback: "space" view

- D_r set of relevant documents {d_r}
- D_n set of non-relevant documents {d_n}
- Rocchio's Formula:

$$q_m = \alpha q + (\beta / |D_r|) \sum d_r - (\gamma / |D_n|) \sum d_n$$

Ide's Regular Formula

$$q_m = \alpha q + \beta \Sigma d_r - \gamma \Sigma d_n$$

Ide's Dec Hi Formula

$$q_m = \alpha q + \beta \Sigma d_r - \gamma \Sigma \max_{\text{non-rel}} (d_j)$$

Problems - User Side

- Rating
 - More information vs. user overload
- Supporting iterative search
 - The user gets tired after 3 or 4 iterations
 - The user prefer to have a sort of "incremental interface" with the new documents highlighted in order to avoid to scan the same documents again and again

SDI: The origin of profiles

- Selective Dissemination of Information
 - User defines her profile of interests
 - System filters all relevant new sources
 - Profile more than a query long term interests - that is where the work on user profiles started
- Used for retrospective and awareness
- Profiles kept updated by the users

Information Filtering

- Common meaning
 - Modern version of SDI also known as Awareness Systems
 - These systems are designed to keep the user informed about an area of interest
 - The user submits his profile as a permanent query that periodically is matched by the system to the new information
- Bob Korfhage's view:
 - "Mining rich ore"

User profile

- Common term for user models in IR/IF
- A user's profile is a collection of information about the user of the system.
- These information is used to get the user to more relevant information
- Views on user profiles
 - Korfhage another reference point
 - Belkin starting part of the user model

- Simple profile
 - A set of search terms (0-1 vector)
 - A boolean query
 - A set of terms with their weights (vector)
- Extended profile
 - contains information related to the user as a person in order to understand or model the use that a person will make with the information retrieved

Extended profile

- Knowledge: about the system and the subject
- Goals: local and global
- Interests
- Background: profession, language, prospect, capabilities
- Preferences (types of docs, authors, sources...)

Who maintains the profile?

- Profile is provided and maintained by the user/administrator
 - Sometimes the only choice
- The system constructs and updates the profile (automatic personalization)
- Collaborative user and system
 - User creates, system maintains
 - User can influence and edit

General system types

- Search-oriented Web IR systems
 - Ad-hoc IR
 - Information Filtering
- Browsing-oriented IR systems
 - Hypertext and the Web
- Information Visualization
- Personalized information spaces
 - Bookmarking systems, MyLibrary systems
- Search services
 - Cover several functions around single user model

What Can Be Adapted?

- Adaptive search and filtering
- Adaptive presentation
 - Presenting a page (analyze results)
- Adaptive information visualization
- Adaptive navigation support
 - Presenting search results (analyze results)
 - Presenting links on a page (proceed from)
- Adaptive collection (crawling)

Adaptive Information Filtering

- Goals:
 - Improve the long-term user profile to get better filtering results
- Methods
 - Variations of relevance feedback for improving the profile
 - Machine learning approaches to learn users' "true" long-tem interests

- Adapts to long-term user preferences
- What to consider:
 - Which news items the user browses
 - How many pages in a new item the user read (mobile platform)
- Uses machine learning
- Significantly improved the number of messages read. Startup launched

Adaptive Search

- Goals:
 - Find documents (pages) that are most suitable for the individual user
- Methods:
 - Employ user profiles representing longterm interests (Korfhage)
 - Use heuristics for adaptation to user types and actions

User profile for adaptive search

- The profile is used to give a context to the query, in order to reduce ambiguity.
- For example the background of the user can be helpful to understand what kind of information he is looking for. A query about the theory of groups has a different meaning for a mathematician and a sociologist. Moreover a student in math is interested in the basic concepts, while a an expert is interested in advanced materials

Using user's profile for search

- The user profile can be applied in three ways:
- To modify the query itself (pre-filter)
- To process results of a query (postfilter),
- To change the usual way of retrieval
 - Profile is treated as a reference point

Post-filter

- The user profile is used to organize the results of the retrieval process
 - present to the user the most interesting documents
 - Filter out irrelevant documents
- Extended profile can be used effectively
- In this case the use of the profile adds an extra step to processing
- Similar to classic information filtering problem
- Typical way for adaptive Web IR

Pre-filter

- In this case the profile is used to modify the query.
- Imagine that:
 - the documents,
 - the query
 - the user profile

are represented by the same set of weighted index terms

Pre-filter: Linear Transformation

- The query $q=q_1, q_2, ... q_n$
- The profile $p=p_1, p_2, \dots p_n$
- The query modified by the user profile will be something like that:

modified
$$q_i = Kp_i + (1-K)q_i$$
 $i=1,2,...n$

Pre-filter: Linear Transformation

 $modified q_i = Kp_i + (1-K)q_i$

■ In this case we add the terms of the profile to the query ones, weighted by *K*

for K=0 modified $q_i=q_i$ the query is unmodified for K=1 modified $q_i=p_i$ the query is substituted by the profile

Piecewise linear transformation

- if the term appears in the query and in the profile then the linear transformation is applied
- if the term appears in the query but not in the profile is left unmodified or diminished slightly
- if the term appears in the profile but not in the query it is not introduced, or introduced with a weight lower than in the profile.

Separate reference points

- In this case documents are retrieved if they are "near" the query or the profile.
- In the following discussion we assume that the similarity is measured by distance

where D is the document and Q is the query

Separate reference points

- We have different way to integrate query and profile as separate reference points:
 - Disjunctive model of query-profile integration
 - Conjunctive model of query-profile integration
 - Ellipsoidal model
 - Cassini oval model

Disjunctive model

In this case we will take the document if the following condition is satisfied:

$$\min(||D,Q||,||D,P||) < d$$

The D document should be "near" the query Q or the profile P

Conjunctive model

Condition to satisfy

$$\max(||D,Q||, ||D,P||) < d$$

The D document should be "near" the query Q and the profile P

In this case if profile and query have little, or noting, in common very few documents are retrieved

Example: SmartGuide

- Access to the CIS-like information
- User has a long-term interests profile and current queries
- Information is searched using a combination of both
- Profile is initiated from a stereotype and kept updated
- Increased user satisfaction, decreased navigation overhead

Example: WIFS

- Adaptive post-filter to AltaVista search engine
- Maintains an advanced stereotypebased user model (Humos subsystem)
- User model is updated by watching the user
- The model is used to filter and re-order the links returned by AltaVista

Adaptive Presentation

- Provide the different content for users with different knowledge, goals, background
- Select/stress most relevant content for the user
- Remove/fade irrelevant pieces of content
- Show additional relevant material for some categories of users
 - comparisons
 - extra explanations
 - details
- Sort fragments most relevant first

Adaptive presentation techniques

- Conditional text filtering and stretchtext
 - ITEM/IP, PT, AHA!, MetaDoc, KN-AHS, PUSH, ADAPTS
- Frame-based adaptation
 - Hypadapter, EPIAIM, ARIANNA, SETA
- Full natural language generation
 - ILEX, PEBA-II, Ecran Total
- Most of techniques rely on extended profiles

Adaptive presentation: evaluation

- MetaDoc: On-line documentation system, adapting to user knowledge on the subject
- Reading comprehension time decreased
- Understanding increased for novices
- No effect for navigation time, number of nodes visited, number of operations