INFSCI 2140 Information Storage and Retrieval Lecture 3: Models of IR: Advanced Models Peter Brusilovsky http://www2.sis.pitt.edu/~peterb/2140-051/

Overview Boolean Models and Databases Problems with Boolean Models Simple Vector Model Extended Boolean Model Fuzzy model and Probabilistic Model Natural Language Things to mention

- Boolean Model
 - Classic
 - Extended
 - Fuzzy
- Vector Model
 - Classic
 - Others (generalized, LSI, Neural Networks)
- Probabilistic Model

Benefits of Boolean model

- Integration of formatted databases and full-text document collections
- Object oriented databases
 - A record is an object and denotes a document
- Boolean Queries work with both (unlike vector model)!
- Example of Boolean search in complex databases

Problems of Boolean Model Can't assign significance for terms Boolean queries are hard for users - misstated queries Order of precedence of OR and AND does matter (A or B and C) The problem of NOT - open corpus Hard to make efficient queries Ordering of the results Controlling the size (Boolean function!)

Designer's prospects for Q & M

- Can we consider query as a document?
- No
 - let's consider a query as a characteristic function defined for document space
- Yes
 - let's put a query into a space and calculate "closeness" or similarity

The query is a part of the document space

- Document and query representation are built in order to catch the meaning of documents and queries.
- We can measure the distance between documents and query using the some method that we have used to calculate the document similarity
- Main problem: how to measure the distance between documents and query?

Vector Model: Documents

- In a vector model each document is represented by a term vector
- 0-1 vector (simple)
 - 0 if the term is not present in the document
 - 1 if the term is present in the document
- Weighed vector
 - 0 if the term is not present in the document
 - term weight if the term is present in the document (the term weight is usually related to the frequency of the term itself)

Vector Model: Queries

- The query is considered as a document so it is represented with a vector
- The system must be designed to ensure that the comparison is always based on comparing the same terms (in the query and in the document)
- The matching between query and documents can be made using the same techniques used to calculate document similarity.

Vector Model: Weighted Queries

- The user can be asked to assign weights to the terms of the query
- If the user assign weights freely some normalization is necessary to ensure that the weights used are compatible with those assigned by the system to documents

Weighted Queries: Normalization

If u is the weight assigned by the user

$$u_{min} < u < u_{max}$$

and the scale of the system is between s_{min} and s_{max} then the new weight is

$$S = \frac{S_{\text{max}}(u - u_{\text{min}}) + S_{\text{min}}(u_{\text{max}} - u)}{u_{\text{max}} - u_{\text{min}}}$$

Vector Model: Presentation

- It is possible to calculate a distance between document and query - easier to deiced what documents the system should output to the user and how to order
- The document can be ranked so:
 - a fixed number of documents (the first 100 for example)
 - the document whose similarity is above a threshold (perhaps specified by the user)

- Vector queries a bit easier for the user -- simply list of terms
- Can provide weights for terms
- Allow "like this" queries
- Basis for personalization and profiling
- BUT: It is not possible to express easily logical connectives

Vector-based matching

- Documents and queries are represented as a vector of weights, each elements of the vector corresponds to the importance of the index term in the document
- Measures
 - Distance measure between documents using metrics (L₁, L₂, etc)
 - Angular (cosine) measure between document vectors

- We need some function to transform the distance between documents into a similarity measure
- A linear transformation is not effective: if the distance is m and k a constant linear transformation is like:

$$s = k - m$$

$$s < 0$$
 if $m > k$

Distance Measure

A more convenient function is:

Angular Measure

- Angular Measure
 - is a measure that does not take into account the length (the norm of the vectors) that represent documents and query
- The idea
 - Vectors pointing to the same direction are close to each other.
- How to measure?

Cosine Measure

Cosine Measure

- $-t_k$ is the weight of the term k in the doc. D
- $-q_k$ is the weight of the term k in the query ${\bf Q}$
- -n is the total number of index terms

$$\sigma(D,Q) = \frac{\sum_{k=1}^{n} t_k \cdot q_k}{\sqrt{\sum_{k=1}^{n} t_k^2} \cdot \sqrt{\sum_{k=1}^{n} q_k^2}}$$

Demo of the system

http://kt2.exp.sis.pitt.edu:8080/VectorModel/index.html

Boolean Model

- Documents form a large set
- A query defines a subset
- Elementary query has a clearly defined subset
 - Each document in the subset matches the query
- To make a complex query one can use Boolean functions for set operation

- Elementary query can have a weight!
 - weight $w \in [0, 1]$
- All Boolean operations are defined for weighed queries
 - $-A(w_1)$ or $B(w_2)$
 - $-A(w_1)$ and $B(w_2)$
 - $-A(w_1)$ and not $B(w_2)$

Fuzzy Model

- Fuzzy matching is defined for elementary terms
 - A fuzzy set corresponds to every elementary term
- Boolean operations are reconsidered for new situation as fuzzy set operations
 - AND as min
 - OR as max
 - NOT as 1-x

Extended Boolean queries

- The weight operation depends on a distance between the two document sets:
 - The set A corresponding to the term a
 - The set **B** corresponding to the term **b**

Extended Boolean queries

- A specific set S depends on the operation * considered
- To explain the mechanism take w₁=1.0 (including all elements of the set A) and consider w₂ increasing from 0.0 to 1.0 (so the set B from not considered if w₂=0.0 to the standard Boolean operation if w₂=1.0)

Extended Boolean Queries

- It is not clear that this model results in significant better retrieval system performances
- It is difficult to predict the effect of any specific weighting

Fuzzy Sets

- In ordinary set theory an element is either in a given set or not
- In a fuzzy set each element has associate a membership function
- Expensive car
 - Price > 50K with probability 0.6
 - -40K < Price <= 50K with probability 0.3
 - 30K < Price <= 40K with probability 0.1

Fuzzy sets

- Suppose U the universal set (the set of all the entities that can be considered)
- A fuzzy set S can be defined as

$$\{x, \mu_s(x) | \mu_s > 0\}$$

where x is a member of U and μ_{s} is the membership function

■ By definition every x for which $\mu_s(x)>0$ is an element of S to some extent

Fuzzy sets

Given two fuzzy sets A and B

$$\mu_{A \cap B}(x) = \min(\mu_A(x), \mu_B(x))$$

$$\mu_{A \cup B}(x) = \max(\mu_A(x), \mu_B(x))$$

$$\mu_{\overline{A}}(x) = 1.0 - \mu_A(x)$$

Fuzzy information retrieval

- The system and often the user cannot accurately tell whether a given document will meet the information need
- This uncertainty is modeled in a fuzzy evaluation of the document with respect to the query

Fuzzy Matching

- In fuzzy matching a query q is used to define a fuzzy set (the query fuzzy set)
- Then it is possible for each document d_j to calculate the membership to this set using a membership function:

$$\mu_q(d_j)$$

Document are retrieved if the membership function is over a defined threshold

Fuzzy Matching

Fuzzy matching appears to be similar to the probability matching but we do not estimate the probability of a document to be relevant but the degree of relevance for a document to a particular query

"Size" problem

- Test document collections an be a very small subset of a real database and processing of all the documents can be time-consuming.
- To solve this problem it can be helpful to make the matching in two steps:
 - 1. Using simple and fast techniques extract a subset of candidates
 - 2. Refine the set using more sophisticated techniques

Things to mention

- Natural language retrieval
- Missing terms in vector model
- Proximity
- Weighting
- Complexity and Scaling
- Data Fusion and Meta-Search

Using the system at the URL (vector model) http://kt2.exp.sis.pitt.edu:8080/VectorModel/index.html answer to the following questions:

- 1. Explain why for the query Brown(1) you will have the cosine measure 0 with document D9,D10 and D12 (look at the formula)
- 2. Report a query that will rank 1 the document D3
- 3. Report a query that will rank 1 the document D9
- 4. Explain why for the following query:

 Quick(1);Dog(2);Jumps(1);Over(1);Lazy(1)

You have the cosine measure with D10 equal to 1 (look at the formula and the document)

Assignment 3 (2a of 3)

Consider the two documents sets

A={4,7,18,21,25}

B={1,5,7,18,22,25}

Corresponding to the terms A and B and the query ($A_{0.7}$ and $B_{0.5}$). Find, using the system at the <u>URL</u>:

http://www2.sis.pitt.edu/~ir/Projects/Spg01/FinalProjects/HoahDerSu/which documents satisfy the query

Assignment 3 (2b of 3)

Consider the two documents sets

Corresponding to the terms A and B and the query $(A_x \text{ and } B_v)$.

Using the system at the URL

http://www2.sis.pitt.edu/~ir/Projects/Spg01/FinalProjects/HoahDerSu/

Find, if exist, the values of x and y that give the following retrieved sets:

$$S_1 = \{1, 10, 2, 4, 3, 5\}$$
 , $S_2 = \{10, 2, 4, 5\}$, $S_3 = \{1, 10\}$, $S_4 = \{1, 2, 4, 7\}$

Assignment 3 (2c of 3)

Consider the two documents sets

Corresponding to the terms A and B and the query

$$(A_x \text{ or } B_y).$$

Using the system at the URL

http://www2.sis.pitt.edu/~ir/Projects/Spg01/FinalProjects/HoahDerSu/

Find, if exist, the values of x and y that give the following retrieved sets:

$$S_1 \! = \! \{1,10,2,4,3,5\} \; , \; S_2 \! = \! \{10,2,4,7\} \; , \; S_3 \! = \! \{1,10\} \; , \\ S_4 \! = \! \{1,2,10,7\}$$

Assignment 3 (3 of 3)

Considering the document represented by the vector $D=(0.5\ 0.6)$ and the query Q=(0.25 0.5) calculate the similarity _(D,Q) using the euclidean distance _ and the two similarity functions

$$\sigma = b^{-\mu}$$

$$\sigma = b^{-\mu}$$
$$\sigma = b^{-\mu^2}$$