INFSCI 2140 Information Storage and Retrieval Lecture 1: Introduction

Peter Brusilovsky

http://www2.sis.pitt.edu/~peterb/2140-051/

INFSCI 2140 and your program

- Foundation course
- One of the key courses in any LS/IS program
- Information retrieval (IR) is one of the oldest and most developed areas of research in information science
- Hot research area with many crossroads

Business prospects for IR

- In the Web age IR became a part of any advanced computer application and started serving virtually any computer user
- Most of existing systems use simple old technologies. Advanced knowledge from IR field can improve the performance significantly

IR as a field of research

- American Society for Information Science (ASIS)
 - JASIS
 - Annual conference
- ACM SIGIR
 - IR conferences
- Information Processing and Management
- Information Retrieval
- Journal of Digital Information

Related fields

- Hypertext and Web
- Digital Libraries
- Multimedia (storage and retrieval)
- Data Mining
- Data Bases
- Knowledge Bases

The content of the course

- Storage and Retrieval
 - Two sides of the same coin
- Focus on *methods and technologies*
 - ...for computerized storage and retrieval of information in the form of documents
- Follows Korfhage book *plus*:
 - HCI (interaction and visualization)
 - Hypertext / hypermedia and WWW
 - User modeling / personalization

Course plan

- Introduction
- Classic Information Retrieval
- Improving Classic Information Retrieval
- What else in IR beyond Classic IR?
- Newest trends
 - User Modeling for IR
 - Web IR

Components of the grade

- Attendance (1 pt per lecture)
- Homework assignments
- Possible Quizzes
- Two Paper projects
- Midterm Exam
- Final group project
 - -Will be announced at the next lecture

- Read two papers
 - · After 2000 and at least 8 pages long
 - On the Web or from recent conferences
- Provide an abstract while also trying to connect the paper to the course content
- Provide concept indexing:
 - What knowledge is required
 - What knowledge is communicated
- Present in public

Course Tools

- All information will be provided via course home pages (see first slide)
- Blackboard system will be used as a course tool for:
 - Posting course materials, assignments, and quizzes
 - Learning about and communication with each other
 - Asking questions and getting answers
 - Submitting assignments
 - Viewing grades and feedback
- Other tools will be used on later stages

Overview of Lecture 1

- Information systems a design view
- Documents and queries
- Documents and surrogates
 - What's in surrogates?
 - What's in documents?

What is information

- Something that
 - is represented by a set of symbols
 - has some structure
 - can be read and to some extent understood by user of information

(Meadow)

What is Information Retrieval

- An information retrieval system is a device interposed between a potential user of information and the information collection itself. For a given information problem, the purpose of the system is to capture wanted items and to filter out unwanted items (Harter)
- Information retrieval deals with the representation, storage, and access to documents or representatives of documents (documents surrogates) (Salton)

Information System: Design View

- Ectosystem factors that an IS designer can't control
 - People involved
 - Available equipment and technology
 - The form in which information is available
- Endosystem factors that an IS designer can specify, control, and manipulate

People in Ectosystem

- User (community of users)
 - The one who will be using the system (may need both to store or retrieve info)
- Funder
 - The one who bears the cost of operating
 - Has a global need in this system
- Server
 - The one who operates the IS and provides services

Example: S-T Info in Russia

- Content: unpublished project reports and Ph.D. thesis
- Users: Russian academics and researchers
- Funder: Russian Government
- Server: AUSTIC a dedicated institution

Case Studies

- Pitt Library
- Amazon.com
- Google
- More examples for homework
 - Prepare analysis in a word file
 - Submit via CourseWeb or e-mail
 - Prepare to present in class

What we can control: Endosystem

- Media
 - Many forms from hardcopy to digital
- Representation
 - Storage formats, encoding, compression
- Devices
 - From file drawers to computers
- Algorithms and Data Structures
 - Maximize the usefulness of services

Performance and evaluation

- User
 - How effective the system is in helping me to satisfy my information needs
- Server
 - How efficient is the system
 - How well the system meets the needs of the user community
- Funder
 - Does the benefits justify costs

Information Objects

- The goal of information retrieval is to obtain information that is contained in one or more documents (information objects, information items)
- Examples
 - Good textbook for IS2140
 - Course for the Fall 2004
 - Fragment from Steelers last game

Information Need

- What kind of information you need to find - what you have in mind
- Example Pension in Zurich
 - Relevant web sites will provide the user with necessary information and forms needed to actually make a reservation in a pension in Zurich.

Abstraction: Data

- Real world and its representation
 - Book -> library card -> database record
 - Course -> course syllabus -> Web page
- IS store information about real world as a collection of data abstracted from real world objects
- The amount and kind of stored information influence the search process

Abstraction: Query

- The user has an information need (IN) in her mind. It can be implicit or explicitly verbalized
- The IS can't understand the IN directly. IN has to be abstracted into a form that matches the information system
- This abstraction is a query

What is a query?

- Statement of an information need
- (Formal?) representation of an information need
 - Request to a librarian
 - IN described in NL
 - "Like that"
- Is a query a document?

Documents

- Document is stored and can be retrieved
- Variety of documents
 - Temporal
 - Ephemeric documents
 - Changing docs
 - Media
 - Real object: books, CDs, vine bottles
 - Digital objects: text, music, pictures, movies...

Formatting aspect Formatted and unformatted Mixture Metadata

Stored description of a document to be used for retrieval and presentation

- Surrogates are incomplete by its nature
 - Can't store all document: space, nature, design choice
- How to produce surrogates

Document surrogates

- By humans rules, practice
- By computers programs

Examples of surrogates

- Document ID (system use!)
- Metadata: author, title, year
- Content representation
 - Keywords
 - Abstract / Extract

Case Study: Photo archive

- Photos are stored, but are not searchable
- Searchable are descriptions
- Description: what, when, where
 - Content (abstract vs. classifier)
 - Time (granularity!)
 - Location (coding scheme vs words)

- Metadata (about it)
 - Usually well-formalized, stored in a formatted database
- Content description
 - Rarely formalized, non-formatted storage
 - Keywords, terms...
 - Full-text abstract/extract
 - Restricted on unrestricted vocabulary

Unrestricted vs. restricted NL

- What could be use to describe the content (abstracts, keywords, terms, classifiers...)
- Controlled vocabulary
 - Words/terms to describe document content only can come from this vocabulary
- Unrestricted vocabulary
 - Any NL sentences /phrases can be used

Controlled vocabulary

- Effectiveness of the overall system storage and search
- Reliability and precision of search

...but...

- Overhead
- Hard to force users and info providers
- Need thesaurus
- Loosing fine elements of meaning

Unrestricted NL

- More complicated logistics, slower search, limited search options
- Lower reliability and precision of search ...but...
- Almost no no overhead for humans
- No thesaurus
- Can express any meaning

What's in a digital document?

- Digital documents
 - Text
 - Rich text and hypertext
 - Images
 - Multimedia
 - Compound documents
- From real to digital document
 - Digitize (code) and store

Digital Representation

- Computer store information digitally in binary format
- Ultimately everything is ones and zeroes
 - characters, numbers
 - e-mail messages, poems
 - pictures, video, music
- Binary coding:
 - 7 = 00000111, '!' = 0001000011;

Representing text

- Coding problem
- Replace every symbol for a 1 byte code
 - Meaningful symbols and control symbols
- Problems of different coding same symbol has multiple codings
- Standards: ASCII, ANSI, KOI-8...
- Too many coding standards, 1 byte??
- Universal standards, unicode

Rich text and hypertext

- Rich text fonts, formatting, styles...
 - NROFF/TROFF, TeX/LaTeX
 - proprietary word processor, RTF
 - HTML
- Hypertext links, anchors...
 - System-dependent way
 - No standard yet, open hypermedia
 - HTML's HREF tag

Image formats Simple bitmap formats - BMP, Pict Publishing software formats - Photoshop, Canvas... Complex formats for BW/Color images - JBIG, TIFF, GIF, JPEG

Music and multimedia

- Sound:
 - Digitized music: aiff, wav, ... MP3
 - Encoded music: MIDI
- Multimedia = moving pictures + sound
 - QuickTime, WPM...
 - MPEG standard
 - SMILE Web standard
- Streaming vs. non-streaming

Compression issues

- Storage space vs. access time
 - Uncompressed surrogates, compressed documents
- Classic text compression
 - Huffman codes; Ziv-Lempel codes
- Image and multimedia compression
 - .gif vs .jpeg
- Loss of information in encoding and compression

Assignment 1

- Due Thursday 9/9
 - Try various features
 - Home page with picture (4pt)
 - Submit an answer to Korfhage search problem to the discussion forum, get ready to present in class (up to 2pt)
 - Submit a Word (or ASCII) file with an analyzed example of an information system (via dropbox) (3pt)