
1

IS12 - Introduction to Programming

Lecture 3: Program Design

Peter Brusilovsky
http://www2.sis.pitt.edu/~peterb/0012-051/

Overview

� Why else do we need new commands
– Case 2: Up the Stairs

– Case 3: Sweep the Stairs

� Program design
– Top-down and design tree approaches

� Exercises in modifying a well-designed
program



2

Why? Case 2: Up the Stairs

� Move Karel up the stairs

Start:

Target:

Why? Case 2: Up the Stairs

beginning-of-program
define-new-instruction
turnright as begin

turnleft;
turnleft;
turnleft;

end;
beginning-of-execution

turnleft;
move;
turnright;
move;

turnleft;
move;
turnright;
move;
turnleft;
move;
turnright;
move;
turnoff;

end-of-execution
end-of-program



3

Solution 2: Up the Stairs

beginning-of-program
define-new-instruction
turnright as begin

turnleft;
turnleft;
turnleft;

end;
define-new-instruction
climb-stair as begin

turnleft;
move;
turnright;
move;

end;

beginning-of-execution
climb-stair;
climb-stair;
climb-stair;
turnoff;

end-of-execution
end-of-program

What is the point?

Walk Around the Block Again

beginning-of-program
define-new-instruction
turnright as begin

turnleft;
turnleft;
turnleft;

end;
define-new-instruction
________ as begin

end;

beginning-of-execution

turnoff;
end-of-execution
end-of-program



4

Why? Case 3: Sweep the Stairs

� Move Karel up the stairs picking
beepers

Start:

Target:

Solution 3: Sweep the Stairs

beginning-of-program
define-new-instruction
turnright as begin

turnleft;
turnleft;
turnleft;

end;
define-new-instruction
climb-stair as begin

turnleft;
move;
turnright;
move;

end;

beginning-of-execution
climb-stair;
pickbeeper;
climb-stair;
pickbeeper;
climb-stair;
pickbeeper;
turnoff;

end-of-execution
end-of-program

What is the point?



5

Why do we need new
instructions?

� Defining clearly missing commands
– turnright

� Automating repeating fragments
– climb-stairs

� Creating useful new instructions that
can be re-used in several contexts
– climb-stairs

Program Design

� Overall goals:
– our programs must be easy to read and

understand

– our programs must be easy to debug

– our programs must be easy to modify to
solve variations of the original task

� The approach:
– Programming as problem solving



6

How to Solve a Problem

� Polya describes problem solving as a
process with four activities
– definition of the problem

– planning the solution

– implementing the plan

– analyzing the solution

� Implementation is just one of four!

� Planning is the key

Case 1: The Harvest Task

� Karel has to pick up a
field of beepers

� We will use a top-down
approach known as
stepwise refinement

� Decompose problem
into sub-problems

� Write the top-level
program using names
of new instructions

� Define them later



7

First Trial with Harvesting a Row

beginning-of-execution
move;
harvest-1-row;
return-to-start;
move-north-1-block;
harvest-1-row;
return-to-start;
move-north-1-block;
harvest-1-row;
return-to-start;
move-north-1-block;

harvest-1-row;
return-to-start;
move-north-1-block;
harvest-1-row;
return-to-start;
move-north-1-block;
harvest-1-row;
return-to-start;
turnoff;

end-of-execution

Second Trial: Harvesting 2 Rows

Main program:
beginning-of-execution

move;
harvest-2-rows;
position-for-next;
harvest-2-rows;
position-for-next;
harvest-2-rows;
move;
turnoff;

end-of-execution

Possible implementation of
harvest-2-rows

define-new-instruction
harvest-2-rows as

begin
harvest-1-row-moving-east;
go-north-to-next-row;
harvest-1-row-moving-west;

end;



8

Further Refinement: Step 2

harvest-2-rows:

define-new-instruction
harvest-2-rows as

begin
harvest-1-row;
go-to-next-row;
harvest-1-row;

end;

position-for-next:

define-new-instruction
position-for-next as

begin
turnright;
move;
turnright;

end;

Further Refinement: Step 3

harvest-1-row:

define-new-instruction
harvest-1-row as

begin
pickbeeper; move;
pickbeeper; move;
pickbeeper; move;
pickbeeper; move;
pickbeeper;

end;

go-to-next-row:

define-new-instruction
go-to-next-row as

begin
turnleft;
move;
turnleft;

end;



9

Solution for Harvest Problem

beginning-of-program
define-new-instruction turnright
as begin

turnleft;
turnleft;
turnleft;

end;
define-new-instruction
go-to-next-row as begin

turnleft;
move;
turnleft;

end;
define-new-instruction position-
for-next as begin

turnright;
move;
turnright;

end;

define-new-instruction harvest-1-row as
begin

pickbeeper; move;
pickbeeper; move;
pickbeeper; move;
pickbeeper; move;
pickbeeper;

end;
define-new-instruction harvest-2-rows
as begin

harvest-1-row;
go-to-next-row;
harvest-1-row;

end;
beginning-of-execution

move;
harvest-2-rows;
position-for-next;
harvest-2-rows;
position-for-next;
harvest-2-rows;
move;
turnoff;

end-of-execution
end-of-program

Stepwise refinement tree for
Harvest

harvest-2-rows position-for-next

Harvest problem

harvest-1-row go-to-next-row turnright



10

Stepwise Refinement vs. Design
Tree Approaches

� Stepwise refinement
• Breadth first approach

• Design program down to code

• Debug components

• Debug whole

� Design tree
• Depth first approach

• Design top level program

• Get the first slice down to code

• Debug the slice ...

Why do we need new
instructions?

� Make the program readable and
understandable
– Compare with section 3.9.3 of Pattis

– Chunking and naming!

� Make the programs easy to debug
– Planning vs. implementation errors

� Make the programs easy to modify to
solve variations of the original task
– Modified Harvest problems



11

Modification 1: Longer Rows

� Where the changes are
localized?

Modification 2: More Rows

� Where the changes are
localized?



12

Modification 3: Now what?

� Can we solve this
problem by
modifying the
original harvest
program?

� Complete exercise
3.11-5 at home

Before next lecture:

� Reading assignment: Pattis, Chapter 3
� Run Classroom Examples
� Check yourself by doing exercises 1,2, and 9

from Section 3.11. Practice top-down design
approach.

� Attempt to solve exercise 5 with minimal
changes to the harvesting program

� Homework 2 (due 9/14/04)
– Solve the specified problem using at least two new

instructions. Use top-down design!


